{"title":"液-液相分离:脓毒症的潜在基本机制。","authors":"Huiyi Chen, Shunyi Huang, Longcheng Quan, Caiyuan Yu, Yang Zhu, Xiaocong Sun, Yuanli Zhang, Liehua Deng, Feng Chen","doi":"10.1038/s41420-025-02599-2","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a life-threatening condition characterized by overactivated inflammation and a dysregulated immune response caused by infection. The predominant mechanism underlying the vulnerability and severity of sepsis has not been fully elucidated. Liquid‒liquid phase separation (LLPS) is a recently discovered, powerful mechanism that drives the formation of membraneless organelles and their biological functions. In particular, emerging evidence indicates that multiple core proteins involved in immune responses, inflammatory signalling, and programmed cell death are organized as protein condensates through LLPS. Here, we present an up-to-date review of the hypothesis that LLPS may underlie the fundamental mechanisms of sepsis, with a focus on the immune system response, changes in inflammatory signalling, and programmed cell death, with the goal of advancing our understanding of the pathological mechanisms of sepsis.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"310"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234736/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liquid‒liquid phase separation: a potentially fundamental mechanism of sepsis.\",\"authors\":\"Huiyi Chen, Shunyi Huang, Longcheng Quan, Caiyuan Yu, Yang Zhu, Xiaocong Sun, Yuanli Zhang, Liehua Deng, Feng Chen\",\"doi\":\"10.1038/s41420-025-02599-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis is a life-threatening condition characterized by overactivated inflammation and a dysregulated immune response caused by infection. The predominant mechanism underlying the vulnerability and severity of sepsis has not been fully elucidated. Liquid‒liquid phase separation (LLPS) is a recently discovered, powerful mechanism that drives the formation of membraneless organelles and their biological functions. In particular, emerging evidence indicates that multiple core proteins involved in immune responses, inflammatory signalling, and programmed cell death are organized as protein condensates through LLPS. Here, we present an up-to-date review of the hypothesis that LLPS may underlie the fundamental mechanisms of sepsis, with a focus on the immune system response, changes in inflammatory signalling, and programmed cell death, with the goal of advancing our understanding of the pathological mechanisms of sepsis.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"310\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12234736/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02599-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02599-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Liquid‒liquid phase separation: a potentially fundamental mechanism of sepsis.
Sepsis is a life-threatening condition characterized by overactivated inflammation and a dysregulated immune response caused by infection. The predominant mechanism underlying the vulnerability and severity of sepsis has not been fully elucidated. Liquid‒liquid phase separation (LLPS) is a recently discovered, powerful mechanism that drives the formation of membraneless organelles and their biological functions. In particular, emerging evidence indicates that multiple core proteins involved in immune responses, inflammatory signalling, and programmed cell death are organized as protein condensates through LLPS. Here, we present an up-to-date review of the hypothesis that LLPS may underlie the fundamental mechanisms of sepsis, with a focus on the immune system response, changes in inflammatory signalling, and programmed cell death, with the goal of advancing our understanding of the pathological mechanisms of sepsis.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.