Marco Patriarca, Stefano Scialla, Els Heinsalu, Marius E Yamakou, Julyan H E Cartwright
{"title":"聚合物链共振移位与多样性诱导共振的动力学等价性。","authors":"Marco Patriarca, Stefano Scialla, Els Heinsalu, Marius E Yamakou, Julyan H E Cartwright","doi":"10.1063/5.0262633","DOIUrl":null,"url":null,"abstract":"<p><p>Networks of heterogeneous oscillators are often seen to display collective synchronized oscillations, even when single elements of the network do not oscillate in isolation. It has been found that it is the diversity of the individual elements that drives the phenomenon, possibly leading to the appearance of a resonance in the response. Here, we study the way in which heterogeneity acts in producing an oscillatory regime in a network and show that the resonance response is based on the same physics underlying the resonant translocation regime observed in models of polymer diffusion on a substrate potential. Such a mechanical analog provides an alternative viewpoint that is useful to interpret and understand the nature of collective oscillations in heterogeneous networks.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical equivalence between resonant translocation of a polymer chain and diversity-induced resonance.\",\"authors\":\"Marco Patriarca, Stefano Scialla, Els Heinsalu, Marius E Yamakou, Julyan H E Cartwright\",\"doi\":\"10.1063/5.0262633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Networks of heterogeneous oscillators are often seen to display collective synchronized oscillations, even when single elements of the network do not oscillate in isolation. It has been found that it is the diversity of the individual elements that drives the phenomenon, possibly leading to the appearance of a resonance in the response. Here, we study the way in which heterogeneity acts in producing an oscillatory regime in a network and show that the resonance response is based on the same physics underlying the resonant translocation regime observed in models of polymer diffusion on a substrate potential. Such a mechanical analog provides an alternative viewpoint that is useful to interpret and understand the nature of collective oscillations in heterogeneous networks.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0262633\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0262633","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamical equivalence between resonant translocation of a polymer chain and diversity-induced resonance.
Networks of heterogeneous oscillators are often seen to display collective synchronized oscillations, even when single elements of the network do not oscillate in isolation. It has been found that it is the diversity of the individual elements that drives the phenomenon, possibly leading to the appearance of a resonance in the response. Here, we study the way in which heterogeneity acts in producing an oscillatory regime in a network and show that the resonance response is based on the same physics underlying the resonant translocation regime observed in models of polymer diffusion on a substrate potential. Such a mechanical analog provides an alternative viewpoint that is useful to interpret and understand the nature of collective oscillations in heterogeneous networks.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.