代谢功能障碍相关脂肪变性肝病进展中的酮代谢产物:优化酮治疗策略

IF 3.1 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Taylor J Kelty, Alexa A Krause, R Scott Rector
{"title":"代谢功能障碍相关脂肪变性肝病进展中的酮代谢产物:优化酮治疗策略","authors":"Taylor J Kelty, Alexa A Krause, R Scott Rector","doi":"10.1152/ajpendo.00178.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) ranges from simple steatosis to hepatocellular injury, inflammation, and fibrosis, ultimately leading to end-stage liver disease. Despite its rising prevalence, treatment options remain limited, highlighting the need for novel therapeutic strategies. In recent years, ketone metabolism has emerged as a key modulator of hepatic metabolic health. Hepatic ketogenesis provides a mechanism for fatty acid mobilization. Endogenously synthesized ketone metabolites can then provide energy for hepatic nonparenchymal cells and extrahepatic tissues. Ketones also function as signaling molecules that can reduce key pathological drivers of MASLD progression. Impaired ketogenesis is observed in MASLD, contributing to metabolic inflexibility and liver dysfunction. Conversely, ketogenic interventions, including exogenous ketone supplementation and ketogenic diets, have been shown to be hepatoprotective, attenuating steatosis, inflammation, and fibrosis. Ketogenic enzyme loss- and gain-of-function studies have highlighted the roles of ketogenesis, ketolysis, and ketone metabolite conversion in MASLD, providing insights to refine keto-therapeutic strategies for disease management. This review seeks to offer a thorough examination of ketone metabolism in MASLD, exploring the mechanistic roles of ketone metabolites in disease progression, and highlighting gaps in the current literature to optimize keto-therapeutics and combat MASLD progression.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E290-E301"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309474/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ketone metabolites in metabolic dysfunction-associated steatotic liver disease progression: optimizing keto-therapeutic strategies.\",\"authors\":\"Taylor J Kelty, Alexa A Krause, R Scott Rector\",\"doi\":\"10.1152/ajpendo.00178.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) ranges from simple steatosis to hepatocellular injury, inflammation, and fibrosis, ultimately leading to end-stage liver disease. Despite its rising prevalence, treatment options remain limited, highlighting the need for novel therapeutic strategies. In recent years, ketone metabolism has emerged as a key modulator of hepatic metabolic health. Hepatic ketogenesis provides a mechanism for fatty acid mobilization. Endogenously synthesized ketone metabolites can then provide energy for hepatic nonparenchymal cells and extrahepatic tissues. Ketones also function as signaling molecules that can reduce key pathological drivers of MASLD progression. Impaired ketogenesis is observed in MASLD, contributing to metabolic inflexibility and liver dysfunction. Conversely, ketogenic interventions, including exogenous ketone supplementation and ketogenic diets, have been shown to be hepatoprotective, attenuating steatosis, inflammation, and fibrosis. Ketogenic enzyme loss- and gain-of-function studies have highlighted the roles of ketogenesis, ketolysis, and ketone metabolite conversion in MASLD, providing insights to refine keto-therapeutic strategies for disease management. This review seeks to offer a thorough examination of ketone metabolism in MASLD, exploring the mechanistic roles of ketone metabolites in disease progression, and highlighting gaps in the current literature to optimize keto-therapeutics and combat MASLD progression.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E290-E301\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00178.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00178.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

代谢功能障碍相关的脂肪变性肝病(MASLD)的范围从单纯的脂肪变性到肝细胞损伤、炎症和纤维化,最终导致终末期肝病。尽管其发病率不断上升,但治疗选择仍然有限,因此需要新的治疗策略。近年来,酮代谢已成为肝脏代谢健康的重要调节因子。肝脏生酮提供了脂肪酸动员的机制。内源性合成的酮代谢物可以为肝脏非实质细胞和肝外组织提供能量。酮类也可以作为信号分子减少MASLD进展的关键病理驱动因素。在MASLD中观察到酮生成受损,导致代谢不灵活和肝功能障碍。相反,生酮干预,包括外源性酮补充和生酮饮食,已被证明具有肝保护作用,减轻脂肪变性、炎症和纤维化。生酮酶功能丧失和功能获得的研究强调了生酮、酮解和酮代谢物转化在MASLD中的作用,为改进疾病管理的酮治疗策略提供了见解。本综述旨在全面研究MASLD中的酮代谢,探索酮代谢物在疾病进展中的机制作用,并强调当前文献中优化酮治疗和对抗MASLD进展的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ketone metabolites in metabolic dysfunction-associated steatotic liver disease progression: optimizing keto-therapeutic strategies.

Metabolic dysfunction-associated steatotic liver disease (MASLD) ranges from simple steatosis to hepatocellular injury, inflammation, and fibrosis, ultimately leading to end-stage liver disease. Despite its rising prevalence, treatment options remain limited, highlighting the need for novel therapeutic strategies. In recent years, ketone metabolism has emerged as a key modulator of hepatic metabolic health. Hepatic ketogenesis provides a mechanism for fatty acid mobilization. Endogenously synthesized ketone metabolites can then provide energy for hepatic nonparenchymal cells and extrahepatic tissues. Ketones also function as signaling molecules that can reduce key pathological drivers of MASLD progression. Impaired ketogenesis is observed in MASLD, contributing to metabolic inflexibility and liver dysfunction. Conversely, ketogenic interventions, including exogenous ketone supplementation and ketogenic diets, have been shown to be hepatoprotective, attenuating steatosis, inflammation, and fibrosis. Ketogenic enzyme loss- and gain-of-function studies have highlighted the roles of ketogenesis, ketolysis, and ketone metabolite conversion in MASLD, providing insights to refine keto-therapeutic strategies for disease management. This review seeks to offer a thorough examination of ketone metabolism in MASLD, exploring the mechanistic roles of ketone metabolites in disease progression, and highlighting gaps in the current literature to optimize keto-therapeutics and combat MASLD progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信