Paul Rosemann, Oliver Michael, Markus Schumacher, Martin Ecke, Sebastian Hütter, Saskia Roßberg, Gabriele Ginard, Andreas Heyn
{"title":"奥氏体不锈钢316l磨致腐蚀敏感性的电化学和分析检测","authors":"Paul Rosemann, Oliver Michael, Markus Schumacher, Martin Ecke, Sebastian Hütter, Saskia Roßberg, Gabriele Ginard, Andreas Heyn","doi":"10.1002/maco.202414733","DOIUrl":null,"url":null,"abstract":"<p>The austenitic stainless steel AISI 316 L was ground using industrially common grinding belts to investigate the corrosion resistance of the resulting surfaces. Although all grinding belts produced comparable ground surfaces, differences in corrosion resistance were detected. The cause of the local corrosion susceptibility was identified and quantified using electrochemical and surface analytical methods. During grinding with granular abrasive belts, steel particles are generated, which become highly heated through friction in the grinding process and consequently fuse locally with the steel surface. These resulting particles form defects in the ground surface with critical crevice geometries, preventing the formation of the protective passive layer. These surface defects were identified as the starting points of local corrosion processes. The critical defects occur particularly when using the so-called granular abrasive belts and are attributed to their special surface topography, which causes significant localization of the grinding processes. A higher corrosion resistance was achieved with single-layered abrasive belts that have a more uniform topography.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"76 7","pages":"912-924"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202414733","citationCount":"0","resultStr":"{\"title\":\"Detection of Grinding-Induced Corrosion Susceptibility of Austenitic Stainless Steel 316 L Using Electrochemical and Analytical Methods\",\"authors\":\"Paul Rosemann, Oliver Michael, Markus Schumacher, Martin Ecke, Sebastian Hütter, Saskia Roßberg, Gabriele Ginard, Andreas Heyn\",\"doi\":\"10.1002/maco.202414733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The austenitic stainless steel AISI 316 L was ground using industrially common grinding belts to investigate the corrosion resistance of the resulting surfaces. Although all grinding belts produced comparable ground surfaces, differences in corrosion resistance were detected. The cause of the local corrosion susceptibility was identified and quantified using electrochemical and surface analytical methods. During grinding with granular abrasive belts, steel particles are generated, which become highly heated through friction in the grinding process and consequently fuse locally with the steel surface. These resulting particles form defects in the ground surface with critical crevice geometries, preventing the formation of the protective passive layer. These surface defects were identified as the starting points of local corrosion processes. The critical defects occur particularly when using the so-called granular abrasive belts and are attributed to their special surface topography, which causes significant localization of the grinding processes. A higher corrosion resistance was achieved with single-layered abrasive belts that have a more uniform topography.</p>\",\"PeriodicalId\":18225,\"journal\":{\"name\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"volume\":\"76 7\",\"pages\":\"912-924\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202414733\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414733\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414733","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Detection of Grinding-Induced Corrosion Susceptibility of Austenitic Stainless Steel 316 L Using Electrochemical and Analytical Methods
The austenitic stainless steel AISI 316 L was ground using industrially common grinding belts to investigate the corrosion resistance of the resulting surfaces. Although all grinding belts produced comparable ground surfaces, differences in corrosion resistance were detected. The cause of the local corrosion susceptibility was identified and quantified using electrochemical and surface analytical methods. During grinding with granular abrasive belts, steel particles are generated, which become highly heated through friction in the grinding process and consequently fuse locally with the steel surface. These resulting particles form defects in the ground surface with critical crevice geometries, preventing the formation of the protective passive layer. These surface defects were identified as the starting points of local corrosion processes. The critical defects occur particularly when using the so-called granular abrasive belts and are attributed to their special surface topography, which causes significant localization of the grinding processes. A higher corrosion resistance was achieved with single-layered abrasive belts that have a more uniform topography.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.