花上同源性和高级突变

IF 1.5 1区 数学 Q1 MATHEMATICS
Soham Chanda
{"title":"花上同源性和高级突变","authors":"Soham Chanda","doi":"10.1016/j.aim.2025.110425","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the construction of higher mutation as introduced in <span><span>[42]</span></span> to local higher mutation, which is applicable to a larger class of monotone Lagrangians. For two-dimensional Lagrangians, local higher mutation is the same as performing a Lagrangian anti-surgery in the sense of <span><span>[24]</span></span> followed by a Lagrangian surgery. We prove that up to a change of local systems, the Lagrangian intersection Floer cohomology of a pair of Lagrangians is invariant under local mutation. This result generalizes the wall-crossing formula in <span><span>[42]</span></span>. For two-dimensional Lagrangians, this result agrees with the invariance result in <span><span>[43]</span></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110425"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floer cohomology and higher mutations\",\"authors\":\"Soham Chanda\",\"doi\":\"10.1016/j.aim.2025.110425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We extend the construction of higher mutation as introduced in <span><span>[42]</span></span> to local higher mutation, which is applicable to a larger class of monotone Lagrangians. For two-dimensional Lagrangians, local higher mutation is the same as performing a Lagrangian anti-surgery in the sense of <span><span>[24]</span></span> followed by a Lagrangian surgery. We prove that up to a change of local systems, the Lagrangian intersection Floer cohomology of a pair of Lagrangians is invariant under local mutation. This result generalizes the wall-crossing formula in <span><span>[42]</span></span>. For two-dimensional Lagrangians, this result agrees with the invariance result in <span><span>[43]</span></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110425\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003238\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003238","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将[42]中引入的高突变的构造推广到局部高突变,它适用于更大的单调拉格朗日算子类。对于二维拉格朗日量,局部高突变相当于在[24]意义上进行拉格朗日反手术,然后再进行拉格朗日手术。证明了在局部系统变化之前,一对拉格朗日算子的拉格朗日交花上同调在局部突变下是不变的。这一结果推广了[42]中的过壁公式。对于二维拉格朗日量,这个结果与[43]中的不变性结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Floer cohomology and higher mutations
We extend the construction of higher mutation as introduced in [42] to local higher mutation, which is applicable to a larger class of monotone Lagrangians. For two-dimensional Lagrangians, local higher mutation is the same as performing a Lagrangian anti-surgery in the sense of [24] followed by a Lagrangian surgery. We prove that up to a change of local systems, the Lagrangian intersection Floer cohomology of a pair of Lagrangians is invariant under local mutation. This result generalizes the wall-crossing formula in [42]. For two-dimensional Lagrangians, this result agrees with the invariance result in [43].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信