原位锚定金/银双金属纳米颗粒在二氧化铈/聚乙烯亚胺纳米片上促进选择性去磷酸化和芳香硝基还原

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xiangming Li , Qingpeng Chen , Xianyang Yang , Ziqing Yan , Zemin Li , Kun Nie , Zequn Ma , Guiyin Li , Meng Fu
{"title":"原位锚定金/银双金属纳米颗粒在二氧化铈/聚乙烯亚胺纳米片上促进选择性去磷酸化和芳香硝基还原","authors":"Xiangming Li ,&nbsp;Qingpeng Chen ,&nbsp;Xianyang Yang ,&nbsp;Ziqing Yan ,&nbsp;Zemin Li ,&nbsp;Kun Nie ,&nbsp;Zequn Ma ,&nbsp;Guiyin Li ,&nbsp;Meng Fu","doi":"10.1016/j.jcis.2025.138354","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the dual challenges of phosphorus resource scarcity and organic pollutant treatment, this study develops a bifunctional ceria/polyethyleneimine/AuAg (CeO<sub>2</sub>/PEI/AuAg) catalyst through self-assembly and in-situ reduction anchoring strategies for both efficient dephosphorylation and aromatic nitroreduction. Its components optimize the catalytic process through multilevel synergy: i) the oxygen vacancies in the CeO<sub>2</sub> component interact with H<sub>2</sub>O to generate lots of protonated hydroxyl groups, which not only enhance the adsorption for phosphates but also facilitate continuous electron enrichment through the Ce<sup>3+</sup>/Ce<sup>4+</sup> redox cycle, ii) the PEI component enhances the interfacial enrichment of phosphates, BH<sub>4</sub><sup>−</sup>, and p-nitrophenol through amino group protonation and serves as a green reductant to drive the in-situ uniform anchoring of AuAg bimetallic nanoparticles onto the CeO<sub>2</sub> support, iii) the AuAg bimetallic component directs the electrons enriched in CeO<sub>2</sub> oxygen vacancies and the reducing electrons provided by BH<sub>4</sub><sup>−</sup> to dual reaction sites via strong metal-support interactions and hierarchical electron transfer channels, thereby improving reaction kinetics. Experimental results show that this catalyst achieves a 3.645 × 10<sup>−3</sup> μmol g<sup>−1</sup> min<sup>−1</sup> dephosphorylation efficiency at 25 °C, with a 4.5 mol g<sup>−1</sup> min<sup>−1</sup> p-nitrophenol reduction rate (turnover frequency: 539 h<sup>−1</sup>), outperforming most previously reported catalysts. This study provides a novel multifunctional material platform for sustainable phosphorus management and organic pollutant degradation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138354"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promoting selective dephosphorylation and aromatic nitroreduction by in-situ anchoring gold/silver bimetallic nanoparticles on ceria/polyethyleneimine nanosheets\",\"authors\":\"Xiangming Li ,&nbsp;Qingpeng Chen ,&nbsp;Xianyang Yang ,&nbsp;Ziqing Yan ,&nbsp;Zemin Li ,&nbsp;Kun Nie ,&nbsp;Zequn Ma ,&nbsp;Guiyin Li ,&nbsp;Meng Fu\",\"doi\":\"10.1016/j.jcis.2025.138354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing the dual challenges of phosphorus resource scarcity and organic pollutant treatment, this study develops a bifunctional ceria/polyethyleneimine/AuAg (CeO<sub>2</sub>/PEI/AuAg) catalyst through self-assembly and in-situ reduction anchoring strategies for both efficient dephosphorylation and aromatic nitroreduction. Its components optimize the catalytic process through multilevel synergy: i) the oxygen vacancies in the CeO<sub>2</sub> component interact with H<sub>2</sub>O to generate lots of protonated hydroxyl groups, which not only enhance the adsorption for phosphates but also facilitate continuous electron enrichment through the Ce<sup>3+</sup>/Ce<sup>4+</sup> redox cycle, ii) the PEI component enhances the interfacial enrichment of phosphates, BH<sub>4</sub><sup>−</sup>, and p-nitrophenol through amino group protonation and serves as a green reductant to drive the in-situ uniform anchoring of AuAg bimetallic nanoparticles onto the CeO<sub>2</sub> support, iii) the AuAg bimetallic component directs the electrons enriched in CeO<sub>2</sub> oxygen vacancies and the reducing electrons provided by BH<sub>4</sub><sup>−</sup> to dual reaction sites via strong metal-support interactions and hierarchical electron transfer channels, thereby improving reaction kinetics. Experimental results show that this catalyst achieves a 3.645 × 10<sup>−3</sup> μmol g<sup>−1</sup> min<sup>−1</sup> dephosphorylation efficiency at 25 °C, with a 4.5 mol g<sup>−1</sup> min<sup>−1</sup> p-nitrophenol reduction rate (turnover frequency: 539 h<sup>−1</sup>), outperforming most previously reported catalysts. This study provides a novel multifunctional material platform for sustainable phosphorus management and organic pollutant degradation.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"700 \",\"pages\":\"Article 138354\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002197972501745X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972501745X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对磷资源短缺和有机污染物处理的双重挑战,本研究通过自组装和原位还原锚定策略,开发了一种双功能氧化铈/聚乙烯亚胺/AuAg (CeO2/PEI/AuAg)催化剂,用于高效脱磷和芳香硝化还原。其组分通过多级协同优化催化过程:i) CeO2组分中的氧空位与H2O相互作用生成大量质子化羟基,不仅增强了对磷酸盐的吸附,而且通过Ce3+/Ce4+氧化还原循环促进了电子的连续富集;ii) PEI组分增强了磷酸盐的界面富集,BH4−;并作为绿色还原剂驱动AuAg双金属纳米颗粒原位均匀锚定在CeO2载体上。iii) AuAg双金属组分通过强金属-载体相互作用和层次化电子转移通道,将富集在CeO2氧空位中的电子和BH4 -提供的还原电子引导到双反应位点,从而改善反应动力学。实验结果表明,该催化剂在25℃下的脱磷效率为3.645 × 10−3 μmol g−1 min−1,对硝基苯酚的还原速率为4.5 mol g−1 min−1(转换频率为539 h−1),优于以往报道的大多数催化剂。该研究为磷的可持续管理和有机污染物的降解提供了一个新的多功能材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Promoting selective dephosphorylation and aromatic nitroreduction by in-situ anchoring gold/silver bimetallic nanoparticles on ceria/polyethyleneimine nanosheets

Promoting selective dephosphorylation and aromatic nitroreduction by in-situ anchoring gold/silver bimetallic nanoparticles on ceria/polyethyleneimine nanosheets
Addressing the dual challenges of phosphorus resource scarcity and organic pollutant treatment, this study develops a bifunctional ceria/polyethyleneimine/AuAg (CeO2/PEI/AuAg) catalyst through self-assembly and in-situ reduction anchoring strategies for both efficient dephosphorylation and aromatic nitroreduction. Its components optimize the catalytic process through multilevel synergy: i) the oxygen vacancies in the CeO2 component interact with H2O to generate lots of protonated hydroxyl groups, which not only enhance the adsorption for phosphates but also facilitate continuous electron enrichment through the Ce3+/Ce4+ redox cycle, ii) the PEI component enhances the interfacial enrichment of phosphates, BH4, and p-nitrophenol through amino group protonation and serves as a green reductant to drive the in-situ uniform anchoring of AuAg bimetallic nanoparticles onto the CeO2 support, iii) the AuAg bimetallic component directs the electrons enriched in CeO2 oxygen vacancies and the reducing electrons provided by BH4 to dual reaction sites via strong metal-support interactions and hierarchical electron transfer channels, thereby improving reaction kinetics. Experimental results show that this catalyst achieves a 3.645 × 10−3 μmol g−1 min−1 dephosphorylation efficiency at 25 °C, with a 4.5 mol g−1 min−1 p-nitrophenol reduction rate (turnover frequency: 539 h−1), outperforming most previously reported catalysts. This study provides a novel multifunctional material platform for sustainable phosphorus management and organic pollutant degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信