Ujjval Bansal , Amit Sharma , Barbara Putz , Christoph Kirchlechner , Subin Lee
{"title":"扫描电镜中数据高效的4D-STEM:从二维材料到金属材料","authors":"Ujjval Bansal , Amit Sharma , Barbara Putz , Christoph Kirchlechner , Subin Lee","doi":"10.1016/j.ultramic.2025.114203","DOIUrl":null,"url":null,"abstract":"<div><div>Four-dimensional scanning transmission electron microscopy (4D-STEM) is a powerful tool that allows for the simultaneous acquisition of spatial and diffraction information, driven by recent advancements in direct electron detector technology. Although 4D-STEM has been predominantly developed for and used in conventional TEM and STEM, efforts are being made to implement the technique in scanning electron microscopy (SEM). In this paper, we push the boundaries of 4D-STEM in SEM and extend its capabilities in three key aspects: (1) faster acquisition rate with reduced data size, (2) higher angular resolution, and (3) application to various materials including conventional alloys and focused ion beam (FIB) lamella. Specifically, operating the MiniPIX Timepix3 detector in the event-driven mode significantly improves the acquisition rate by a factor of a few tenths compared to conventional frame-based mode, thereby opening up possibilities for integrating 4D-STEM into various <em>in situ</em> SEM testing. Furthermore, with a novel stage-detector geometry, a camera length of 160 mm is achieved which improves the angular resolution amplifying its utility, for example, magnetic or electric field imaging. Lastly, we successfully imaged a nanostructured platinum-copper thin film with a grain size of 16 nm and a thickness of 20 nm, and identified annealing twins in FIB-prepared polycrystalline copper using virtual dark-field imaging and orientation mapping. This work demonstrates the potential of synergetic combination of 4D-STEM with <em>in situ</em> experiments, and broadening its applications across a wide range of materials.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"276 ","pages":"Article 114203"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-efficient 4D-STEM in SEM: Beyond 2D materials to metallic materials\",\"authors\":\"Ujjval Bansal , Amit Sharma , Barbara Putz , Christoph Kirchlechner , Subin Lee\",\"doi\":\"10.1016/j.ultramic.2025.114203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Four-dimensional scanning transmission electron microscopy (4D-STEM) is a powerful tool that allows for the simultaneous acquisition of spatial and diffraction information, driven by recent advancements in direct electron detector technology. Although 4D-STEM has been predominantly developed for and used in conventional TEM and STEM, efforts are being made to implement the technique in scanning electron microscopy (SEM). In this paper, we push the boundaries of 4D-STEM in SEM and extend its capabilities in three key aspects: (1) faster acquisition rate with reduced data size, (2) higher angular resolution, and (3) application to various materials including conventional alloys and focused ion beam (FIB) lamella. Specifically, operating the MiniPIX Timepix3 detector in the event-driven mode significantly improves the acquisition rate by a factor of a few tenths compared to conventional frame-based mode, thereby opening up possibilities for integrating 4D-STEM into various <em>in situ</em> SEM testing. Furthermore, with a novel stage-detector geometry, a camera length of 160 mm is achieved which improves the angular resolution amplifying its utility, for example, magnetic or electric field imaging. Lastly, we successfully imaged a nanostructured platinum-copper thin film with a grain size of 16 nm and a thickness of 20 nm, and identified annealing twins in FIB-prepared polycrystalline copper using virtual dark-field imaging and orientation mapping. This work demonstrates the potential of synergetic combination of 4D-STEM with <em>in situ</em> experiments, and broadening its applications across a wide range of materials.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"276 \",\"pages\":\"Article 114203\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399125001019\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125001019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
Data-efficient 4D-STEM in SEM: Beyond 2D materials to metallic materials
Four-dimensional scanning transmission electron microscopy (4D-STEM) is a powerful tool that allows for the simultaneous acquisition of spatial and diffraction information, driven by recent advancements in direct electron detector technology. Although 4D-STEM has been predominantly developed for and used in conventional TEM and STEM, efforts are being made to implement the technique in scanning electron microscopy (SEM). In this paper, we push the boundaries of 4D-STEM in SEM and extend its capabilities in three key aspects: (1) faster acquisition rate with reduced data size, (2) higher angular resolution, and (3) application to various materials including conventional alloys and focused ion beam (FIB) lamella. Specifically, operating the MiniPIX Timepix3 detector in the event-driven mode significantly improves the acquisition rate by a factor of a few tenths compared to conventional frame-based mode, thereby opening up possibilities for integrating 4D-STEM into various in situ SEM testing. Furthermore, with a novel stage-detector geometry, a camera length of 160 mm is achieved which improves the angular resolution amplifying its utility, for example, magnetic or electric field imaging. Lastly, we successfully imaged a nanostructured platinum-copper thin film with a grain size of 16 nm and a thickness of 20 nm, and identified annealing twins in FIB-prepared polycrystalline copper using virtual dark-field imaging and orientation mapping. This work demonstrates the potential of synergetic combination of 4D-STEM with in situ experiments, and broadening its applications across a wide range of materials.
期刊介绍:
Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.