非均匀椭圆各向异性积分的向量极小值的正则性

IF 1.3 2区 数学 Q1 MATHEMATICS
Pasquale Ambrosio , Giovanni Cupini , Elvira Mascolo
{"title":"非均匀椭圆各向异性积分的向量极小值的正则性","authors":"Pasquale Ambrosio ,&nbsp;Giovanni Cupini ,&nbsp;Elvira Mascolo","doi":"10.1016/j.na.2025.113897","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the local boundedness of the local minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span> of non-uniformly elliptic integrals of the form <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>v</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the integrand satisfies anisotropic growth conditions of the type <span><span><span><math><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup></mrow></mfenced></mrow></math></span></span></span>for some exponents <span><math><mrow><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span> and with non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behavior of the integrand and the fact that we also address the case of vectorial minimizers (<span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113897"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals\",\"authors\":\"Pasquale Ambrosio ,&nbsp;Giovanni Cupini ,&nbsp;Elvira Mascolo\",\"doi\":\"10.1016/j.na.2025.113897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the local boundedness of the local minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span> of non-uniformly elliptic integrals of the form <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>v</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the integrand satisfies anisotropic growth conditions of the type <span><span><span><math><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup></mrow></mfenced></mrow></math></span></span></span>for some exponents <span><math><mrow><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span> and with non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behavior of the integrand and the fact that we also address the case of vectorial minimizers (<span><math><mrow><mi>m</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113897\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001518\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001518","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了形式为∫Ωf(x,Dv)dx的非一致椭圆积分的局部极小值u:Ω→Rm的局部有界性,其中Ω是Rn (n≥2)的有界开子集,且被积函数满足∑i=1nλi(x)|ξi|pi≤f(x,ξ)≤μ(x)1+|ξ| q对于某些指数q≥pi>;1且非负函数λi,μ满足适当的可和性假设。这里的主要新颖之处是被积函数的退化和各向异性行为,以及我们还处理向量最小值的情况(m>1)。我们的证明基于著名的Moser迭代技术,并采用了各向异性Sobolev空间的嵌入结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals
We establish the local boundedness of the local minimizers u:ΩRm of non-uniformly elliptic integrals of the form Ωf(x,Dv)dx, where Ω is a bounded open subset of Rn (n2) and the integrand satisfies anisotropic growth conditions of the type i=1nλi(x)|ξi|pif(x,ξ)μ(x)1+|ξ|qfor some exponents qpi>1 and with non-negative functions λi,μ fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behavior of the integrand and the fact that we also address the case of vectorial minimizers (m>1). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信