Pasquale Ambrosio , Giovanni Cupini , Elvira Mascolo
{"title":"非均匀椭圆各向异性积分的向量极小值的正则性","authors":"Pasquale Ambrosio , Giovanni Cupini , Elvira Mascolo","doi":"10.1016/j.na.2025.113897","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the local boundedness of the local minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span> of non-uniformly elliptic integrals of the form <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>v</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the integrand satisfies anisotropic growth conditions of the type <span><span><span><math><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup></mrow></mfenced></mrow></math></span></span></span>for some exponents <span><math><mrow><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span> and with non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behavior of the integrand and the fact that we also address the case of vectorial minimizers (<span><math><mrow><mi>m</mi><mo>></mo><mn>1</mn></mrow></math></span>). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113897"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals\",\"authors\":\"Pasquale Ambrosio , Giovanni Cupini , Elvira Mascolo\",\"doi\":\"10.1016/j.na.2025.113897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish the local boundedness of the local minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></math></span> of non-uniformly elliptic integrals of the form <span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>v</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span> and the integrand satisfies anisotropic growth conditions of the type <span><span><span><math><mrow><munderover><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>ξ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>≤</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mfenced><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>ξ</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup></mrow></mfenced></mrow></math></span></span></span>for some exponents <span><math><mrow><mi>q</mi><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span> and with non-negative functions <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>μ</mi></mrow></math></span> fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behavior of the integrand and the fact that we also address the case of vectorial minimizers (<span><math><mrow><mi>m</mi><mo>></mo><mn>1</mn></mrow></math></span>). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113897\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001518\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001518","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals
We establish the local boundedness of the local minimizers of non-uniformly elliptic integrals of the form , where is a bounded open subset of and the integrand satisfies anisotropic growth conditions of the type for some exponents and with non-negative functions fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behavior of the integrand and the fact that we also address the case of vectorial minimizers (). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.