Maisa N.G. van Genderen , Raymond M. Martens , Frederik Barkhof , Philip C. de Witt Hamer , Roelant S. Eijgelaar
{"title":"图:神经胶质瘤手术决策支持的web应用程序","authors":"Maisa N.G. van Genderen , Raymond M. Martens , Frederik Barkhof , Philip C. de Witt Hamer , Roelant S. Eijgelaar","doi":"10.1016/j.cmpbup.2025.100199","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Patients with glioma, the most common primary malignant brain tumor, often undergo surgery, aiming to remove as much tumor as possible while maintaining functional integrity. However, there is large variation in surgical decisions. This study aims to provide a data-driven approach to surgery planning and evaluation, estimating personalized potential extent of resection, based on a large multicenter MRI database.</div></div><div><h3>Methods</h3><div>We developed an interactive web-application (PICTURE tool), that uses segmented MRI scans from prior surgeries to create resection probability maps. The maps depict the chance of tumor tissue resection based on decisions in prior surgeries.</div></div><div><h3>Results</h3><div>The PICTURE tool enables uploading scans of a new patient and comparing these with the resection probability map of previous patients. This map can then be filtered for clinical characteristics to compare with similar patients and can be interactively explored to determine which parts of the tumor are more or less likely to be resected in a particular patient. Additionally, tumor characteristics and expected extent of resection are reported.</div></div><div><h3>Conclusions</h3><div>The PICTURE tool can enable data-driven glioma surgery planning through interactive generation of resection probability maps.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"8 ","pages":"Article 100199"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picture: A web application for decision support in glioma surgery\",\"authors\":\"Maisa N.G. van Genderen , Raymond M. Martens , Frederik Barkhof , Philip C. de Witt Hamer , Roelant S. Eijgelaar\",\"doi\":\"10.1016/j.cmpbup.2025.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective</h3><div>Patients with glioma, the most common primary malignant brain tumor, often undergo surgery, aiming to remove as much tumor as possible while maintaining functional integrity. However, there is large variation in surgical decisions. This study aims to provide a data-driven approach to surgery planning and evaluation, estimating personalized potential extent of resection, based on a large multicenter MRI database.</div></div><div><h3>Methods</h3><div>We developed an interactive web-application (PICTURE tool), that uses segmented MRI scans from prior surgeries to create resection probability maps. The maps depict the chance of tumor tissue resection based on decisions in prior surgeries.</div></div><div><h3>Results</h3><div>The PICTURE tool enables uploading scans of a new patient and comparing these with the resection probability map of previous patients. This map can then be filtered for clinical characteristics to compare with similar patients and can be interactively explored to determine which parts of the tumor are more or less likely to be resected in a particular patient. Additionally, tumor characteristics and expected extent of resection are reported.</div></div><div><h3>Conclusions</h3><div>The PICTURE tool can enable data-driven glioma surgery planning through interactive generation of resection probability maps.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"8 \",\"pages\":\"Article 100199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990025000230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Picture: A web application for decision support in glioma surgery
Background and Objective
Patients with glioma, the most common primary malignant brain tumor, often undergo surgery, aiming to remove as much tumor as possible while maintaining functional integrity. However, there is large variation in surgical decisions. This study aims to provide a data-driven approach to surgery planning and evaluation, estimating personalized potential extent of resection, based on a large multicenter MRI database.
Methods
We developed an interactive web-application (PICTURE tool), that uses segmented MRI scans from prior surgeries to create resection probability maps. The maps depict the chance of tumor tissue resection based on decisions in prior surgeries.
Results
The PICTURE tool enables uploading scans of a new patient and comparing these with the resection probability map of previous patients. This map can then be filtered for clinical characteristics to compare with similar patients and can be interactively explored to determine which parts of the tumor are more or less likely to be resected in a particular patient. Additionally, tumor characteristics and expected extent of resection are reported.
Conclusions
The PICTURE tool can enable data-driven glioma surgery planning through interactive generation of resection probability maps.