z2n -流形范畴中的主束

IF 0.7 4区 数学 Q3 MATHEMATICS
Andrew James Bruce , Janusz Grabowski
{"title":"z2n -流形范畴中的主束","authors":"Andrew James Bruce ,&nbsp;Janusz Grabowski","doi":"10.1016/j.difgeo.2025.102269","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and examine the notion of principal <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-bundles, i.e., principal bundles in the category of <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-manifolds. The latter are higher graded extensions of supermanifolds in which a <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-grading replaces <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-grading. These extensions have opened up new areas of research of great interest in both physics and mathematics. In principle, the geometry of <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-manifolds is essentially different than that of supermanifolds, as for n &gt; 1 we have formal variables of even parity, so local smooth functions are power series in formal variables. On the other hand, a full version of differential calculus is still valid. We show in this paper that the fundamental properties of classical principal bundles can be generalised to the setting of this ‘higher graded’ geometry, with properly defined frame bundles of <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-vector bundles as canonical examples. Additionally, we propose a new approach to the concept of a vector bundle in this setting. However, formulating these ideas and proving these results relies on many technical upshots established in earlier papers. A comprehensive introduction to <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-manifolds is therefore included together with basic examples.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102269"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal bundles in the category of Z2n-manifolds\",\"authors\":\"Andrew James Bruce ,&nbsp;Janusz Grabowski\",\"doi\":\"10.1016/j.difgeo.2025.102269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce and examine the notion of principal <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-bundles, i.e., principal bundles in the category of <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-manifolds. The latter are higher graded extensions of supermanifolds in which a <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-grading replaces <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-grading. These extensions have opened up new areas of research of great interest in both physics and mathematics. In principle, the geometry of <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-manifolds is essentially different than that of supermanifolds, as for n &gt; 1 we have formal variables of even parity, so local smooth functions are power series in formal variables. On the other hand, a full version of differential calculus is still valid. We show in this paper that the fundamental properties of classical principal bundles can be generalised to the setting of this ‘higher graded’ geometry, with properly defined frame bundles of <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-vector bundles as canonical examples. Additionally, we propose a new approach to the concept of a vector bundle in this setting. However, formulating these ideas and proving these results relies on many technical upshots established in earlier papers. A comprehensive introduction to <span><math><msubsup><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>-manifolds is therefore included together with basic examples.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"100 \",\"pages\":\"Article 102269\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000440\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000440","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

引入并检验了z2n -主束的概念,即z2n -流形范畴中的主束。后者是z2n级配取代z2级配的超流形的高级配扩展。这些扩展为物理学和数学开辟了新的研究领域。原则上,z2n流形的几何形状与超流形的几何形状本质上是不同的,对于n >;我们有偶宇称的形式变量,所以局部光滑函数是形式变量的幂级数。另一方面,完整版的微分学仍然有效。本文以适当定义的z2n向量束的框架束为典型例子,证明了经典主束的基本性质可以推广到这种“高阶”几何的集合中。此外,我们提出了一种新的方法来处理这种情况下向量束的概念。然而,形成这些想法并证明这些结果依赖于早期论文中建立的许多技术结果。因此,对z2n流形的全面介绍与基本示例一起包括在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal bundles in the category of Z2n-manifolds
We introduce and examine the notion of principal Z2n-bundles, i.e., principal bundles in the category of Z2n-manifolds. The latter are higher graded extensions of supermanifolds in which a Z2n-grading replaces Z2-grading. These extensions have opened up new areas of research of great interest in both physics and mathematics. In principle, the geometry of Z2n-manifolds is essentially different than that of supermanifolds, as for n > 1 we have formal variables of even parity, so local smooth functions are power series in formal variables. On the other hand, a full version of differential calculus is still valid. We show in this paper that the fundamental properties of classical principal bundles can be generalised to the setting of this ‘higher graded’ geometry, with properly defined frame bundles of Z2n-vector bundles as canonical examples. Additionally, we propose a new approach to the concept of a vector bundle in this setting. However, formulating these ideas and proving these results relies on many technical upshots established in earlier papers. A comprehensive introduction to Z2n-manifolds is therefore included together with basic examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信