{"title":"Batalin-Vilkovisky形式主义中的等变局部化","authors":"Alberto S. Cattaneo, Shuhan Jiang","doi":"10.1016/j.difgeo.2025.102265","DOIUrl":null,"url":null,"abstract":"<div><div>We derive equivariant localization formulas of Atiyah–Bott and cohomological field theory types in the Batalin-Vilkovisky formalism and discuss their applications in Poisson geometry and quantum field theory.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102265"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant localization in Batalin-Vilkovisky formalism\",\"authors\":\"Alberto S. Cattaneo, Shuhan Jiang\",\"doi\":\"10.1016/j.difgeo.2025.102265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive equivariant localization formulas of Atiyah–Bott and cohomological field theory types in the Batalin-Vilkovisky formalism and discuss their applications in Poisson geometry and quantum field theory.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"100 \",\"pages\":\"Article 102265\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224525000403\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000403","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Equivariant localization in Batalin-Vilkovisky formalism
We derive equivariant localization formulas of Atiyah–Bott and cohomological field theory types in the Batalin-Vilkovisky formalism and discuss their applications in Poisson geometry and quantum field theory.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.