印尼语跨语言命名实体识别

Danang Arbian Sulistyo , Aji Prasetya Wibawa , Didik Dwi Prasetya , Fadhli Almu’iini Ahda
{"title":"印尼语跨语言命名实体识别","authors":"Danang Arbian Sulistyo ,&nbsp;Aji Prasetya Wibawa ,&nbsp;Didik Dwi Prasetya ,&nbsp;Fadhli Almu’iini Ahda","doi":"10.1016/j.rmal.2025.100236","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the potential of Named Entity Recognition (NER) in translating cross-biblical texts of Indonesian, Madurese, and Javanese. The goal is to enhance translation precision by incorporating entity categorization. The approach involves training an NER model using Conditional Random Fields (CRF) and evaluating its performance on the Book of Joshua. The annotated dataset includes features such as word identity, shape, part-of-speech identifiers, and semantic information. Tagging the data with labels such as Person, Location, and Organization reveals variations in effectiveness across languages. Indonesian yields the highest F1 score (78.69), reflecting consistent performance across all parameters. Although Madurese achieves a high recall for Location entities (82.16), its precision is lower (74.99). Javanese demonstrates strong precision in identifying locations (77.46), but a slightly lower recall score (77.21). The findings suggest the need to tailor the NER model to suit the specific characteristics of low-resource languages for improved translation quality.</div></div>","PeriodicalId":101075,"journal":{"name":"Research Methods in Applied Linguistics","volume":"4 3","pages":"Article 100236"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indonesian cross-linguistic named entity recognition\",\"authors\":\"Danang Arbian Sulistyo ,&nbsp;Aji Prasetya Wibawa ,&nbsp;Didik Dwi Prasetya ,&nbsp;Fadhli Almu’iini Ahda\",\"doi\":\"10.1016/j.rmal.2025.100236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the potential of Named Entity Recognition (NER) in translating cross-biblical texts of Indonesian, Madurese, and Javanese. The goal is to enhance translation precision by incorporating entity categorization. The approach involves training an NER model using Conditional Random Fields (CRF) and evaluating its performance on the Book of Joshua. The annotated dataset includes features such as word identity, shape, part-of-speech identifiers, and semantic information. Tagging the data with labels such as Person, Location, and Organization reveals variations in effectiveness across languages. Indonesian yields the highest F1 score (78.69), reflecting consistent performance across all parameters. Although Madurese achieves a high recall for Location entities (82.16), its precision is lower (74.99). Javanese demonstrates strong precision in identifying locations (77.46), but a slightly lower recall score (77.21). The findings suggest the need to tailor the NER model to suit the specific characteristics of low-resource languages for improved translation quality.</div></div>\",\"PeriodicalId\":101075,\"journal\":{\"name\":\"Research Methods in Applied Linguistics\",\"volume\":\"4 3\",\"pages\":\"Article 100236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Methods in Applied Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772766125000576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods in Applied Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772766125000576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了命名实体识别(NER)在印尼语、马杜雷语和爪哇语跨圣经文本翻译中的潜力。目标是通过结合实体分类来提高翻译精度。该方法包括使用条件随机场(Conditional Random Fields, CRF)训练一个NER模型,并评估其在约书亚记上的表现。带注释的数据集包括单词标识、形状、词性标识符和语义信息等特征。用诸如Person、Location和Organization之类的标签标记数据,揭示了不同语言之间有效性的差异。印度尼西亚获得了最高的F1分数(78.69),反映了在所有参数上的一致表现。虽然Madurese对Location实体的查全率较高(82.16),但准确率较低(74.99)。爪哇语在识别位置方面表现出很高的精确度(77.46),但召回率略低(77.21)。研究结果表明,为了提高翻译质量,需要调整NER模型以适应低资源语言的具体特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indonesian cross-linguistic named entity recognition
This study examines the potential of Named Entity Recognition (NER) in translating cross-biblical texts of Indonesian, Madurese, and Javanese. The goal is to enhance translation precision by incorporating entity categorization. The approach involves training an NER model using Conditional Random Fields (CRF) and evaluating its performance on the Book of Joshua. The annotated dataset includes features such as word identity, shape, part-of-speech identifiers, and semantic information. Tagging the data with labels such as Person, Location, and Organization reveals variations in effectiveness across languages. Indonesian yields the highest F1 score (78.69), reflecting consistent performance across all parameters. Although Madurese achieves a high recall for Location entities (82.16), its precision is lower (74.99). Javanese demonstrates strong precision in identifying locations (77.46), but a slightly lower recall score (77.21). The findings suggest the need to tailor the NER model to suit the specific characteristics of low-resource languages for improved translation quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信