Long Ma;Tengyu Ma;Chengpei Xu;Jinyuan Liu;Xin Fan;Zhongxuan Luo;Risheng Liu
{"title":"用自校正器学习快速鲁棒弱光图像增强","authors":"Long Ma;Tengyu Ma;Chengpei Xu;Jinyuan Liu;Xin Fan;Zhongxuan Luo;Risheng Liu","doi":"10.1109/TPAMI.2025.3586712","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) have shown significant success in the low-light image enhancement task. However, most of existing works encounter challenges in balancing quality and efficiency simultaneously. This limitation hinders practical applicability in real-world scenarios and downstream vision tasks. To overcome these obstacles, we propose a Self-Calibrated Illumination (SCI) learning scheme, introducing a new perspective to boost the model’s capability. Based on a weight-sharing illumination estimation process, we construct an embedded self-calibrator to accelerate stage-level convergence, yielding gains that utilize only a single basic block for inference, which drastically diminishes computation cost. Additionally, by introducing the additivity condition on the basic block, we acquire a reinforced version dubbed SCI++, which disentangles the relationship between the self-calibrator and illumination estimator, providing a more interpretable and effective learning paradigm with faster convergence and better stability. We assess the proposed enhancers on standard benchmarks and in-the-wild datasets, confirming that they can restore clean images from diverse scenes with higher quality and efficiency. The verification on different levels of low-light vision tasks shows our applicability against other methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"9095-9112"},"PeriodicalIF":18.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning With Self-Calibrator for Fast and Robust Low-Light Image Enhancement\",\"authors\":\"Long Ma;Tengyu Ma;Chengpei Xu;Jinyuan Liu;Xin Fan;Zhongxuan Luo;Risheng Liu\",\"doi\":\"10.1109/TPAMI.2025.3586712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) have shown significant success in the low-light image enhancement task. However, most of existing works encounter challenges in balancing quality and efficiency simultaneously. This limitation hinders practical applicability in real-world scenarios and downstream vision tasks. To overcome these obstacles, we propose a Self-Calibrated Illumination (SCI) learning scheme, introducing a new perspective to boost the model’s capability. Based on a weight-sharing illumination estimation process, we construct an embedded self-calibrator to accelerate stage-level convergence, yielding gains that utilize only a single basic block for inference, which drastically diminishes computation cost. Additionally, by introducing the additivity condition on the basic block, we acquire a reinforced version dubbed SCI++, which disentangles the relationship between the self-calibrator and illumination estimator, providing a more interpretable and effective learning paradigm with faster convergence and better stability. We assess the proposed enhancers on standard benchmarks and in-the-wild datasets, confirming that they can restore clean images from diverse scenes with higher quality and efficiency. The verification on different levels of low-light vision tasks shows our applicability against other methods.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 10\",\"pages\":\"9095-9112\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11072373/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072373/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning With Self-Calibrator for Fast and Robust Low-Light Image Enhancement
Convolutional Neural Networks (CNNs) have shown significant success in the low-light image enhancement task. However, most of existing works encounter challenges in balancing quality and efficiency simultaneously. This limitation hinders practical applicability in real-world scenarios and downstream vision tasks. To overcome these obstacles, we propose a Self-Calibrated Illumination (SCI) learning scheme, introducing a new perspective to boost the model’s capability. Based on a weight-sharing illumination estimation process, we construct an embedded self-calibrator to accelerate stage-level convergence, yielding gains that utilize only a single basic block for inference, which drastically diminishes computation cost. Additionally, by introducing the additivity condition on the basic block, we acquire a reinforced version dubbed SCI++, which disentangles the relationship between the self-calibrator and illumination estimator, providing a more interpretable and effective learning paradigm with faster convergence and better stability. We assess the proposed enhancers on standard benchmarks and in-the-wild datasets, confirming that they can restore clean images from diverse scenes with higher quality and efficiency. The verification on different levels of low-light vision tasks shows our applicability against other methods.