孔隙弹性准静态Biot方程的非稳定离散化

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Christian Kreuzer, Pietro Zanotti
{"title":"孔隙弹性准静态Biot方程的非稳定离散化","authors":"Christian Kreuzer, Pietro Zanotti","doi":"10.1093/imanum/draf032","DOIUrl":null,"url":null,"abstract":"We propose a new full discretization of the Biot’s equations in poroelasticity. The construction is driven by the inf-sup theory, which we recently developed. It builds upon the four-field formulation of the equations obtained by introducing the total pressure and the total fluid content. We discretize in space with Lagrange finite elements and in time with backward Euler. We establish inf-sup stability and quasi-optimality of the proposed discretization, with robust constants with respect to all material parameters and the time horizon. We further construct an interpolant showing how the error decays for smooth solutions.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"189 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inf-sup stable discretization of the quasi-static Biot’s equations in poroelasticity\",\"authors\":\"Christian Kreuzer, Pietro Zanotti\",\"doi\":\"10.1093/imanum/draf032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new full discretization of the Biot’s equations in poroelasticity. The construction is driven by the inf-sup theory, which we recently developed. It builds upon the four-field formulation of the equations obtained by introducing the total pressure and the total fluid content. We discretize in space with Lagrange finite elements and in time with backward Euler. We establish inf-sup stability and quasi-optimality of the proposed discretization, with robust constants with respect to all material parameters and the time horizon. We further construct an interpolant showing how the error decays for smooth solutions.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf032\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf032","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的多孔弹性力学中Biot方程的完全离散化方法。这种结构是由我们最近开发的内支撑理论驱动的。它建立在引入总压力和总流体含量得到的方程的四场公式的基础上。在空间上用拉格朗日有限元进行离散,在时间上用向后欧拉进行离散。我们建立了所提出的离散化的稳定性和准最优性,具有关于所有材料参数和时间范围的鲁棒常数。我们进一步构造了一个插值,显示了平滑解的误差衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inf-sup stable discretization of the quasi-static Biot’s equations in poroelasticity
We propose a new full discretization of the Biot’s equations in poroelasticity. The construction is driven by the inf-sup theory, which we recently developed. It builds upon the four-field formulation of the equations obtained by introducing the total pressure and the total fluid content. We discretize in space with Lagrange finite elements and in time with backward Euler. We establish inf-sup stability and quasi-optimality of the proposed discretization, with robust constants with respect to all material parameters and the time horizon. We further construct an interpolant showing how the error decays for smooth solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信