自旋群对称破缺中反常霍尔效应的多极各向异性

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zheng Liu, Mengjie Wei, Wenzhi Peng, Dazhi Hou, Yang Gao, Qian Niu
{"title":"自旋群对称破缺中反常霍尔效应的多极各向异性","authors":"Zheng Liu, Mengjie Wei, Wenzhi Peng, Dazhi Hou, Yang Gao, Qian Niu","doi":"10.1103/physrevx.15.031006","DOIUrl":null,"url":null,"abstract":"The traditional view of the anomalous Hall effect (AHE) in ferromagnets is that it arises from the magnetization perpendicular to the measurement plane and that there is a linear dependence on the latter. Underlying such a view is the thinking that the AHE is a time-reversal symmetry breaking phenomenon and can therefore be treated in terms of a power series in the magnetic order. However, this view is squarely challenged by a number of recent experiments, urging for a thorough theoretical investigation on the fundamental level. We find that for strong magnets, it is more appropriate and fruitful to regard the AHE as a spin-group symmetry breaking phenomenon where the critical parameter is the spin-orbit interaction strength, which involves a much smaller energy scale. In collinear ferromagnets, the spin-orbit coupling breaks the ∞</a:mi>2</a:mn>′</a:mo></a:msup></a:math> spin rotation symmetry, and the key to characterizing such symmetry breaking is the identification of spin-orbit vectors which transform regularly under spin-group operations. Born out of our framework is a rich multipolar relationship between the anomalous Hall conductivity and the magnetization direction, with each pole being expanded progressively in powers of the spin-orbit coupling strength. For the leading order contribution, i.e., the dipole, its isotropic part corresponds to the traditional view, and its anisotropic part can lead to the in-plane AHE where the magnetization lies within the measurement plane. Beyond the dipolar structure, the octupolar structure offers the leading order source of nonlinearity and hence introduces unique anisotropy where the dipolar structure cannot. Our theory thus offers a unified explanation for the in-plane AHE recently observed in various ferromagnets, and further extends the candidate material systems. It can also be generalized to study the anomalous Hall effect in crystals with any periodic spin structure and to study the nonlinear Hall effect and the spin Hall effect. Our theory lays the ground for decoding the coupling between various transport and optical phenomena and the magnetic orders. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"9 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipolar Anisotropy in Anomalous Hall Effect from Spin-Group Symmetry Breaking\",\"authors\":\"Zheng Liu, Mengjie Wei, Wenzhi Peng, Dazhi Hou, Yang Gao, Qian Niu\",\"doi\":\"10.1103/physrevx.15.031006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional view of the anomalous Hall effect (AHE) in ferromagnets is that it arises from the magnetization perpendicular to the measurement plane and that there is a linear dependence on the latter. Underlying such a view is the thinking that the AHE is a time-reversal symmetry breaking phenomenon and can therefore be treated in terms of a power series in the magnetic order. However, this view is squarely challenged by a number of recent experiments, urging for a thorough theoretical investigation on the fundamental level. We find that for strong magnets, it is more appropriate and fruitful to regard the AHE as a spin-group symmetry breaking phenomenon where the critical parameter is the spin-orbit interaction strength, which involves a much smaller energy scale. In collinear ferromagnets, the spin-orbit coupling breaks the ∞</a:mi>2</a:mn>′</a:mo></a:msup></a:math> spin rotation symmetry, and the key to characterizing such symmetry breaking is the identification of spin-orbit vectors which transform regularly under spin-group operations. Born out of our framework is a rich multipolar relationship between the anomalous Hall conductivity and the magnetization direction, with each pole being expanded progressively in powers of the spin-orbit coupling strength. For the leading order contribution, i.e., the dipole, its isotropic part corresponds to the traditional view, and its anisotropic part can lead to the in-plane AHE where the magnetization lies within the measurement plane. Beyond the dipolar structure, the octupolar structure offers the leading order source of nonlinearity and hence introduces unique anisotropy where the dipolar structure cannot. Our theory thus offers a unified explanation for the in-plane AHE recently observed in various ferromagnets, and further extends the candidate material systems. It can also be generalized to study the anomalous Hall effect in crystals with any periodic spin structure and to study the nonlinear Hall effect and the spin Hall effect. Our theory lays the ground for decoding the coupling between various transport and optical phenomena and the magnetic orders. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.031006\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.031006","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

关于铁磁体中反常霍尔效应的传统观点认为,反常霍尔效应是由垂直于测量平面的磁化引起的,并且与测量平面的磁化呈线性关系。这种观点的基础是认为AHE是一种时间反转对称性破缺现象,因此可以用磁序的幂级数来处理。然而,这一观点受到了最近一些实验的直接挑战,迫切需要在基本层面上进行彻底的理论研究。我们发现,对于强磁体,将AHE视为一种自旋-群对称破缺现象更为合适和有效,其关键参数是自旋-轨道相互作用强度,涉及的能量尺度要小得多。在共线铁磁体中,自旋轨道耦合破坏了∞2’自旋旋转对称性,表征这种对称性破坏的关键是识别自旋群操作下有规则变换的自旋轨道向量。从我们的框架中诞生了异常霍尔电导率与磁化方向之间丰富的多极关系,每个极点在自旋轨道耦合强度的幂次上逐步扩展。对于阶贡献即偶极子,其各向同性部分符合传统观点,其各向异性部分可导致磁化位于测量平面内的面内AHE。除了偶极结构之外,八极结构提供了非线性的主要来源,因此引入了偶极结构所不能的独特的各向异性。因此,我们的理论为最近在各种铁磁体中观察到的面内AHE提供了统一的解释,并进一步扩展了候选材料体系。它也可以推广到研究任意周期自旋结构晶体中的反常霍尔效应,以及研究非线性霍尔效应和自旋霍尔效应。我们的理论为解码各种输运和光现象与磁序之间的耦合奠定了基础。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipolar Anisotropy in Anomalous Hall Effect from Spin-Group Symmetry Breaking
The traditional view of the anomalous Hall effect (AHE) in ferromagnets is that it arises from the magnetization perpendicular to the measurement plane and that there is a linear dependence on the latter. Underlying such a view is the thinking that the AHE is a time-reversal symmetry breaking phenomenon and can therefore be treated in terms of a power series in the magnetic order. However, this view is squarely challenged by a number of recent experiments, urging for a thorough theoretical investigation on the fundamental level. We find that for strong magnets, it is more appropriate and fruitful to regard the AHE as a spin-group symmetry breaking phenomenon where the critical parameter is the spin-orbit interaction strength, which involves a much smaller energy scale. In collinear ferromagnets, the spin-orbit coupling breaks the ∞2′ spin rotation symmetry, and the key to characterizing such symmetry breaking is the identification of spin-orbit vectors which transform regularly under spin-group operations. Born out of our framework is a rich multipolar relationship between the anomalous Hall conductivity and the magnetization direction, with each pole being expanded progressively in powers of the spin-orbit coupling strength. For the leading order contribution, i.e., the dipole, its isotropic part corresponds to the traditional view, and its anisotropic part can lead to the in-plane AHE where the magnetization lies within the measurement plane. Beyond the dipolar structure, the octupolar structure offers the leading order source of nonlinearity and hence introduces unique anisotropy where the dipolar structure cannot. Our theory thus offers a unified explanation for the in-plane AHE recently observed in various ferromagnets, and further extends the candidate material systems. It can also be generalized to study the anomalous Hall effect in crystals with any periodic spin structure and to study the nonlinear Hall effect and the spin Hall effect. Our theory lays the ground for decoding the coupling between various transport and optical phenomena and the magnetic orders. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信