Taha B Hayal, Aman A Mulla, David S J Allan, Brynn B Duncan, Saanika Joshi, So Gun Hong, Rafet Basar, Katayoun Rezvani, Richard W Childs, Chuanfeng Wu, Cynthia E Dunbar
{"title":"条形码抗cd20嵌合抗原受体慢病毒转染恒河猴和人自然杀伤细胞的优化。","authors":"Taha B Hayal, Aman A Mulla, David S J Allan, Brynn B Duncan, Saanika Joshi, So Gun Hong, Rafet Basar, Katayoun Rezvani, Richard W Childs, Chuanfeng Wu, Cynthia E Dunbar","doi":"10.1016/j.omtm.2025.101473","DOIUrl":null,"url":null,"abstract":"<p><p>Natural killer (NK) cells are pivotal in immunosurveillance and hold great potential for immunotherapy due to their ability to target malignant cells. Their low risk of causing graft-versus-host disease (GvHD) post-allogenic transplantation underscores their potential as an off-the shelf cellular therapy tool. Advances in genetic engineering focus on improving NK targeting, persistence, and fitness. However, NK cells pose challenges for lentiviral transduction, which are clinically relevant and safe. In this study, we identified Poloxamer 407 (P407) as a novel transduction enhancer for rhesus macaque (RM) and human NK cells. We found that P407 significantly improved transduction efficiency, achieving up to 60% in expanded RM NK cells, without compromising cell viability or functionality. Additionally, P407 facilitated the expression of anti-CD20 chimeric antigen receptors (CARs) with or without interleukin (IL)-15. In a xenograft mouse model, CAR-IL15 NK cells demonstrated superior anti-tumor activity, and maintained higher clonal diversity tracked by genetic barcoding compared to CAR-NK cells lacking IL-15 <i>in vivo</i>. Additionally, in human NK cells, P407 combined with the TBK1/IKKε inhibitor, BX795, further improved lentivirus-mediated transduction. This study is the first to engineer NK cells from a clinically relevant rhesus macaque model in an adaptive cell therapy context and highlights P407's potential as a transduction enhancer.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"33 2","pages":"101473"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229723/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of lentiviral delivery of barcoded anti-CD20 chimeric antigen receptors into rhesus macaque and human natural killer cells.\",\"authors\":\"Taha B Hayal, Aman A Mulla, David S J Allan, Brynn B Duncan, Saanika Joshi, So Gun Hong, Rafet Basar, Katayoun Rezvani, Richard W Childs, Chuanfeng Wu, Cynthia E Dunbar\",\"doi\":\"10.1016/j.omtm.2025.101473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural killer (NK) cells are pivotal in immunosurveillance and hold great potential for immunotherapy due to their ability to target malignant cells. Their low risk of causing graft-versus-host disease (GvHD) post-allogenic transplantation underscores their potential as an off-the shelf cellular therapy tool. Advances in genetic engineering focus on improving NK targeting, persistence, and fitness. However, NK cells pose challenges for lentiviral transduction, which are clinically relevant and safe. In this study, we identified Poloxamer 407 (P407) as a novel transduction enhancer for rhesus macaque (RM) and human NK cells. We found that P407 significantly improved transduction efficiency, achieving up to 60% in expanded RM NK cells, without compromising cell viability or functionality. Additionally, P407 facilitated the expression of anti-CD20 chimeric antigen receptors (CARs) with or without interleukin (IL)-15. In a xenograft mouse model, CAR-IL15 NK cells demonstrated superior anti-tumor activity, and maintained higher clonal diversity tracked by genetic barcoding compared to CAR-NK cells lacking IL-15 <i>in vivo</i>. Additionally, in human NK cells, P407 combined with the TBK1/IKKε inhibitor, BX795, further improved lentivirus-mediated transduction. This study is the first to engineer NK cells from a clinically relevant rhesus macaque model in an adaptive cell therapy context and highlights P407's potential as a transduction enhancer.</p>\",\"PeriodicalId\":54333,\"journal\":{\"name\":\"Molecular Therapy-Methods & Clinical Development\",\"volume\":\"33 2\",\"pages\":\"101473\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229723/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy-Methods & Clinical Development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtm.2025.101473\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/12 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2025.101473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Optimization of lentiviral delivery of barcoded anti-CD20 chimeric antigen receptors into rhesus macaque and human natural killer cells.
Natural killer (NK) cells are pivotal in immunosurveillance and hold great potential for immunotherapy due to their ability to target malignant cells. Their low risk of causing graft-versus-host disease (GvHD) post-allogenic transplantation underscores their potential as an off-the shelf cellular therapy tool. Advances in genetic engineering focus on improving NK targeting, persistence, and fitness. However, NK cells pose challenges for lentiviral transduction, which are clinically relevant and safe. In this study, we identified Poloxamer 407 (P407) as a novel transduction enhancer for rhesus macaque (RM) and human NK cells. We found that P407 significantly improved transduction efficiency, achieving up to 60% in expanded RM NK cells, without compromising cell viability or functionality. Additionally, P407 facilitated the expression of anti-CD20 chimeric antigen receptors (CARs) with or without interleukin (IL)-15. In a xenograft mouse model, CAR-IL15 NK cells demonstrated superior anti-tumor activity, and maintained higher clonal diversity tracked by genetic barcoding compared to CAR-NK cells lacking IL-15 in vivo. Additionally, in human NK cells, P407 combined with the TBK1/IKKε inhibitor, BX795, further improved lentivirus-mediated transduction. This study is the first to engineer NK cells from a clinically relevant rhesus macaque model in an adaptive cell therapy context and highlights P407's potential as a transduction enhancer.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.