{"title":"使用人工智能的肌图信号评估运动损伤的见解:范围综述。","authors":"Wonbum Sohn, M Hongchul Sohn, Jongsang Son","doi":"10.1007/s13534-025-00483-7","DOIUrl":null,"url":null,"abstract":"<p><p>Myographic signals can effectively detect and assess subtle changes in muscle function; however, their measurement and analysis are often limited in clinical settings compared to inertial measurement units. Recently, the advent of artificial intelligence (AI) has made the analysis of complex myographic signals more feasible. This scoping review aims to examine the use of myographic signals in conjunction with AI for assessing motor impairments and highlight potential limitations and future directions. We conducted a systematic search using specific keywords in the Scopus and PubMed databases. After a thorough screening process, 111 relevant studies were selected for review. These studies were organized based on target applications (measurement modality, measurement location, and AI application task), sample demographics (age, sex, ethnicity, and pathology), and AI models (general approach and algorithm type). Among various myographic measurement modalities, surface electromyography was the most commonly used. In terms of AI approaches, machine learning with feature engineering was the predominant method, with classification tasks being the most common application of AI. Our review also noted a significant bias in participant demographics, with a greater representation of males compared to females and healthy individuals compared to clinical populations. Overall, our findings suggest that integrating myographic signals with AI has the potential to provide more objective and clinically relevant assessments of motor impairments.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 4","pages":"693-716"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights into motor impairment assessment using myographic signals with artificial intelligence: a scoping review.\",\"authors\":\"Wonbum Sohn, M Hongchul Sohn, Jongsang Son\",\"doi\":\"10.1007/s13534-025-00483-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myographic signals can effectively detect and assess subtle changes in muscle function; however, their measurement and analysis are often limited in clinical settings compared to inertial measurement units. Recently, the advent of artificial intelligence (AI) has made the analysis of complex myographic signals more feasible. This scoping review aims to examine the use of myographic signals in conjunction with AI for assessing motor impairments and highlight potential limitations and future directions. We conducted a systematic search using specific keywords in the Scopus and PubMed databases. After a thorough screening process, 111 relevant studies were selected for review. These studies were organized based on target applications (measurement modality, measurement location, and AI application task), sample demographics (age, sex, ethnicity, and pathology), and AI models (general approach and algorithm type). Among various myographic measurement modalities, surface electromyography was the most commonly used. In terms of AI approaches, machine learning with feature engineering was the predominant method, with classification tasks being the most common application of AI. Our review also noted a significant bias in participant demographics, with a greater representation of males compared to females and healthy individuals compared to clinical populations. Overall, our findings suggest that integrating myographic signals with AI has the potential to provide more objective and clinically relevant assessments of motor impairments.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"15 4\",\"pages\":\"693-716\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-025-00483-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-025-00483-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Insights into motor impairment assessment using myographic signals with artificial intelligence: a scoping review.
Myographic signals can effectively detect and assess subtle changes in muscle function; however, their measurement and analysis are often limited in clinical settings compared to inertial measurement units. Recently, the advent of artificial intelligence (AI) has made the analysis of complex myographic signals more feasible. This scoping review aims to examine the use of myographic signals in conjunction with AI for assessing motor impairments and highlight potential limitations and future directions. We conducted a systematic search using specific keywords in the Scopus and PubMed databases. After a thorough screening process, 111 relevant studies were selected for review. These studies were organized based on target applications (measurement modality, measurement location, and AI application task), sample demographics (age, sex, ethnicity, and pathology), and AI models (general approach and algorithm type). Among various myographic measurement modalities, surface electromyography was the most commonly used. In terms of AI approaches, machine learning with feature engineering was the predominant method, with classification tasks being the most common application of AI. Our review also noted a significant bias in participant demographics, with a greater representation of males compared to females and healthy individuals compared to clinical populations. Overall, our findings suggest that integrating myographic signals with AI has the potential to provide more objective and clinically relevant assessments of motor impairments.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.