膳食中姜黄素和熊果酸联合对小鼠前列腺癌进展的协同抑制作用。

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chelsea A Friedman, Achinto Saha, Rachel Clark, Carly Wilder, Jordan Wright, John DiGiovanni
{"title":"膳食中姜黄素和熊果酸联合对小鼠前列腺癌进展的协同抑制作用。","authors":"Chelsea A Friedman, Achinto Saha, Rachel Clark, Carly Wilder, Jordan Wright, John DiGiovanni","doi":"10.1002/mc.70000","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is the second leading cause of cancer-related death among American men, and its long latency offers a window for chemopreventive strategies. Phytochemicals, with their diverse impacts on cancer cell growth and metabolism, represent promising candidates for such strategies. Combining compounds like curcumin (Curc) and ursolic acid (UA), which target multiple pathways, can be advantageous in slowing tumor progression. Previous studies revealed the synergistic effects of Curc + UA in reducing tumor growth in a PCa allograft model. In this study, diet-based interventions were evaluated using two transgenic mouse models of PCa. Mice fed a Curc + UA-enriched diet exhibited significant inhibition of prostate tumor progression compared to single-agent diets in both HiMyc and PTEN knockout mouse models. Protein analyses of ventral prostate tissues from HiMyc mice indicated that the combination suppressed oncogenic signaling pathways, including STAT3, AKT, and mTORC1, while modulating cell regulatory proteins to inhibit tumor cell proliferation. Furthert mechanistic studies in mouse and human PCa cell lines confirmed that Curc + UA exerted pleiotropic effects by influencing oncogenic signaling, cell cycle regulation, mitochondrial function, unfolded protein response (UPR), and apoptosis, collectively contributing to its synergistic efficacy. These findings highlight the potential of Curc + UA to inhibit PCa progression through multitargeted mechanisms. The combination's superior efficacy over single agents underscores its promise as a chemopreventive or therapeutic strategy. This study provides a strong rationale for further mechanistic investigations and clinical development of Curc + UA for PCa prevention and treatment.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Inhibition of Prostate Cancer Progression in Mice With a Combination of Curcumin and Ursolic Acid in the Diet.\",\"authors\":\"Chelsea A Friedman, Achinto Saha, Rachel Clark, Carly Wilder, Jordan Wright, John DiGiovanni\",\"doi\":\"10.1002/mc.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer (PCa) is the second leading cause of cancer-related death among American men, and its long latency offers a window for chemopreventive strategies. Phytochemicals, with their diverse impacts on cancer cell growth and metabolism, represent promising candidates for such strategies. Combining compounds like curcumin (Curc) and ursolic acid (UA), which target multiple pathways, can be advantageous in slowing tumor progression. Previous studies revealed the synergistic effects of Curc + UA in reducing tumor growth in a PCa allograft model. In this study, diet-based interventions were evaluated using two transgenic mouse models of PCa. Mice fed a Curc + UA-enriched diet exhibited significant inhibition of prostate tumor progression compared to single-agent diets in both HiMyc and PTEN knockout mouse models. Protein analyses of ventral prostate tissues from HiMyc mice indicated that the combination suppressed oncogenic signaling pathways, including STAT3, AKT, and mTORC1, while modulating cell regulatory proteins to inhibit tumor cell proliferation. Furthert mechanistic studies in mouse and human PCa cell lines confirmed that Curc + UA exerted pleiotropic effects by influencing oncogenic signaling, cell cycle regulation, mitochondrial function, unfolded protein response (UPR), and apoptosis, collectively contributing to its synergistic efficacy. These findings highlight the potential of Curc + UA to inhibit PCa progression through multitargeted mechanisms. The combination's superior efficacy over single agents underscores its promise as a chemopreventive or therapeutic strategy. This study provides a strong rationale for further mechanistic investigations and clinical development of Curc + UA for PCa prevention and treatment.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.70000\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.70000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌(PCa)是美国男性癌症相关死亡的第二大原因,它的长潜伏期为化学预防策略提供了一个窗口。植物化学物质对癌细胞生长和代谢具有不同的影响,是这些策略的有希望的候选者。结合姜黄素(Curc)和熊果酸(UA)等靶向多种途径的化合物,可以有利于减缓肿瘤的进展。先前的研究显示Curc + UA在减少PCa同种异体移植模型中肿瘤生长的协同作用。在本研究中,我们使用两种转基因PCa小鼠模型来评估基于饮食的干预措施。在HiMyc和PTEN敲除小鼠模型中,与单药饮食相比,喂食富含Curc + ua的饮食的小鼠显示出显著的前列腺肿瘤进展抑制作用。对HiMyc小鼠腹侧前列腺组织的蛋白质分析表明,该组合抑制了致癌信号通路,包括STAT3、AKT和mTORC1,同时调节细胞调节蛋白,抑制肿瘤细胞增殖。在小鼠和人PCa细胞系的进一步机制研究证实,Curc + UA通过影响致癌信号、细胞周期调节、线粒体功能、未折叠蛋白反应(UPR)和细胞凋亡发挥多效性作用,共同促进其协同作用。这些发现强调了Curc + UA通过多靶点机制抑制PCa进展的潜力。该组合优于单一药物的疗效强调了其作为化学预防或治疗策略的前景。本研究为进一步研究Curc + UA预防和治疗PCa的机制和临床发展提供了强有力的理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Inhibition of Prostate Cancer Progression in Mice With a Combination of Curcumin and Ursolic Acid in the Diet.

Prostate cancer (PCa) is the second leading cause of cancer-related death among American men, and its long latency offers a window for chemopreventive strategies. Phytochemicals, with their diverse impacts on cancer cell growth and metabolism, represent promising candidates for such strategies. Combining compounds like curcumin (Curc) and ursolic acid (UA), which target multiple pathways, can be advantageous in slowing tumor progression. Previous studies revealed the synergistic effects of Curc + UA in reducing tumor growth in a PCa allograft model. In this study, diet-based interventions were evaluated using two transgenic mouse models of PCa. Mice fed a Curc + UA-enriched diet exhibited significant inhibition of prostate tumor progression compared to single-agent diets in both HiMyc and PTEN knockout mouse models. Protein analyses of ventral prostate tissues from HiMyc mice indicated that the combination suppressed oncogenic signaling pathways, including STAT3, AKT, and mTORC1, while modulating cell regulatory proteins to inhibit tumor cell proliferation. Furthert mechanistic studies in mouse and human PCa cell lines confirmed that Curc + UA exerted pleiotropic effects by influencing oncogenic signaling, cell cycle regulation, mitochondrial function, unfolded protein response (UPR), and apoptosis, collectively contributing to its synergistic efficacy. These findings highlight the potential of Curc + UA to inhibit PCa progression through multitargeted mechanisms. The combination's superior efficacy over single agents underscores its promise as a chemopreventive or therapeutic strategy. This study provides a strong rationale for further mechanistic investigations and clinical development of Curc + UA for PCa prevention and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信