Lochlain Corliss, Chad M Petit, Nicholas J Lennemann
{"title":"正黄病毒蛋白酶活性的亚细胞决定因素。","authors":"Lochlain Corliss, Chad M Petit, Nicholas J Lennemann","doi":"10.1016/j.jbc.2025.110451","DOIUrl":null,"url":null,"abstract":"<p><p>Orthoflaviviruses are small, enveloped, positive-sense RNA viruses that cause over 500 million infections globally each year for which there are no antiviral treatments. The viral protease is an attractive target for therapeutics due to its critical functions throughout infection. Many studies have reported on the structure, function, and importance of orthoflavivirus proteases; however, the molecular determinants for cleavage of intracellular substrates by orthoflavivirus proteases and how these factors affect viral fitness are unknown. In this study, we used our fluorescent, protease-activity reporter system to investigate the subcellular determinants involved in orthoflavivirus protease cleavage. By modifying our reporter platform, we identified endoplasmic reticulum (ER) subdomain localization and membrane proximity of the substrate cleavage site as two previously uncharacterized molecular determinants for cleavage. We also altered the amino acid composition of the reporter recognition motif to introduce sequences present at the cytoplasmic cleavage junctions within orthoflavivirus polyproteins and found that each protease processed the sequence located at the junction between NS4A and the 2K peptide least efficiently. Live-cell imaging revealed that cleavage of the NS4A|2K motif is significantly delayed compared to the capsid cleavage sequence. We further determined that introducing a more efficient cleavage sequence into the NS4A|2K junctions of orthoflavivirus infectious clones abolished virus recovery. Overall, this study identifies ER subdomain localization and membrane proximity of the recognition motif as molecular determinants for cleavage by orthoflavivirus proteases and provides insight into the role that sequence specificity plays in the coordinated processing of the viral polyprotein and establishing productive infections.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110451"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subcellular determinants of orthoflavivirus protease activity.\",\"authors\":\"Lochlain Corliss, Chad M Petit, Nicholas J Lennemann\",\"doi\":\"10.1016/j.jbc.2025.110451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Orthoflaviviruses are small, enveloped, positive-sense RNA viruses that cause over 500 million infections globally each year for which there are no antiviral treatments. The viral protease is an attractive target for therapeutics due to its critical functions throughout infection. Many studies have reported on the structure, function, and importance of orthoflavivirus proteases; however, the molecular determinants for cleavage of intracellular substrates by orthoflavivirus proteases and how these factors affect viral fitness are unknown. In this study, we used our fluorescent, protease-activity reporter system to investigate the subcellular determinants involved in orthoflavivirus protease cleavage. By modifying our reporter platform, we identified endoplasmic reticulum (ER) subdomain localization and membrane proximity of the substrate cleavage site as two previously uncharacterized molecular determinants for cleavage. We also altered the amino acid composition of the reporter recognition motif to introduce sequences present at the cytoplasmic cleavage junctions within orthoflavivirus polyproteins and found that each protease processed the sequence located at the junction between NS4A and the 2K peptide least efficiently. Live-cell imaging revealed that cleavage of the NS4A|2K motif is significantly delayed compared to the capsid cleavage sequence. We further determined that introducing a more efficient cleavage sequence into the NS4A|2K junctions of orthoflavivirus infectious clones abolished virus recovery. Overall, this study identifies ER subdomain localization and membrane proximity of the recognition motif as molecular determinants for cleavage by orthoflavivirus proteases and provides insight into the role that sequence specificity plays in the coordinated processing of the viral polyprotein and establishing productive infections.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"110451\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110451\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110451","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Subcellular determinants of orthoflavivirus protease activity.
Orthoflaviviruses are small, enveloped, positive-sense RNA viruses that cause over 500 million infections globally each year for which there are no antiviral treatments. The viral protease is an attractive target for therapeutics due to its critical functions throughout infection. Many studies have reported on the structure, function, and importance of orthoflavivirus proteases; however, the molecular determinants for cleavage of intracellular substrates by orthoflavivirus proteases and how these factors affect viral fitness are unknown. In this study, we used our fluorescent, protease-activity reporter system to investigate the subcellular determinants involved in orthoflavivirus protease cleavage. By modifying our reporter platform, we identified endoplasmic reticulum (ER) subdomain localization and membrane proximity of the substrate cleavage site as two previously uncharacterized molecular determinants for cleavage. We also altered the amino acid composition of the reporter recognition motif to introduce sequences present at the cytoplasmic cleavage junctions within orthoflavivirus polyproteins and found that each protease processed the sequence located at the junction between NS4A and the 2K peptide least efficiently. Live-cell imaging revealed that cleavage of the NS4A|2K motif is significantly delayed compared to the capsid cleavage sequence. We further determined that introducing a more efficient cleavage sequence into the NS4A|2K junctions of orthoflavivirus infectious clones abolished virus recovery. Overall, this study identifies ER subdomain localization and membrane proximity of the recognition motif as molecular determinants for cleavage by orthoflavivirus proteases and provides insight into the role that sequence specificity plays in the coordinated processing of the viral polyprotein and establishing productive infections.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.