Yong Yan Tang , Tao Liu , Xi Wu , Yu Ting Zhang , Liang Bing Wei , Ya Chen Gao , Xing Xing Zhuang , Jia Rong Gao
{"title":"代谢组学和转录组学联合分析揭示了IgA肾病小鼠肾组织的代谢变化。","authors":"Yong Yan Tang , Tao Liu , Xi Wu , Yu Ting Zhang , Liang Bing Wei , Ya Chen Gao , Xing Xing Zhuang , Jia Rong Gao","doi":"10.1016/j.ygeno.2025.111076","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Immunoglobulin A nephropathy (IgAN) is a globally prevalent primary chronic glomerulopathy and a leading cause of end-stage renal disease. Despite its significance, the underlying mechanisms of IgAN remain poorly understood. This study aims to investigate these mechanisms by integrating metabolomics and transcriptomics approaches.</div></div><div><h3>Methods</h3><div>We established an IgAN mouse model and conducted pathological analysis using hematoxylin and eosin (HE) staining and immunofluorescent staining. Renal function was assessed by enzyme-linked immunosorbent assay (ELISA) and biochemical assays. Mass spectrometry-based metabolomics was employed to analyze differentially abundant metabolites (DAMs), while transcriptomics was employed to analyze differentially expressed genes (DEGs).</div></div><div><h3>Results</h3><div>An IgAN mouse model was successfully established. HE staining revealed abnormal proliferation of glomerular mesangial cells, while immunofluorescence staining indicated excessive deposition in the glomerular region. ELISA results showed that IgA levels were significantly elevated in the serum of IgAN mice. Biochemical tests showed that blood creatinine (CRE), blood urea nitrogen (BUN) and urine protein levels were significantly elevated in IgAN mice. Metabolomics and transcriptomics analyses identified 184 DAMs and 482 DEGs in the kidney tissues of normal and IgAN mice, respectively. Notably, combined analyses revealed that both DAMs and DEGs were enriched in 3 key pathways: bile secretion, pyruvate metabolism, and cholesterol metabolism.</div></div><div><h3>Conclusion</h3><div>In this article, we identified 3 critical pathways—bile secretion, pyruvate metabolism, and cholesterol metabolism—through a comprehensive analysis of metabolomics and transcriptomics. These pathways may play an important role in affecting metabolic changes in the renal tissue of IgAN mice and provide fresh insights into the pathogenesis of IgAN.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"117 5","pages":"Article 111076"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The combined analysis of metabolomics and transcriptomics revealed the metabolic changes of kidney tissue in mice with IgA nephropathy\",\"authors\":\"Yong Yan Tang , Tao Liu , Xi Wu , Yu Ting Zhang , Liang Bing Wei , Ya Chen Gao , Xing Xing Zhuang , Jia Rong Gao\",\"doi\":\"10.1016/j.ygeno.2025.111076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Immunoglobulin A nephropathy (IgAN) is a globally prevalent primary chronic glomerulopathy and a leading cause of end-stage renal disease. Despite its significance, the underlying mechanisms of IgAN remain poorly understood. This study aims to investigate these mechanisms by integrating metabolomics and transcriptomics approaches.</div></div><div><h3>Methods</h3><div>We established an IgAN mouse model and conducted pathological analysis using hematoxylin and eosin (HE) staining and immunofluorescent staining. Renal function was assessed by enzyme-linked immunosorbent assay (ELISA) and biochemical assays. Mass spectrometry-based metabolomics was employed to analyze differentially abundant metabolites (DAMs), while transcriptomics was employed to analyze differentially expressed genes (DEGs).</div></div><div><h3>Results</h3><div>An IgAN mouse model was successfully established. HE staining revealed abnormal proliferation of glomerular mesangial cells, while immunofluorescence staining indicated excessive deposition in the glomerular region. ELISA results showed that IgA levels were significantly elevated in the serum of IgAN mice. Biochemical tests showed that blood creatinine (CRE), blood urea nitrogen (BUN) and urine protein levels were significantly elevated in IgAN mice. Metabolomics and transcriptomics analyses identified 184 DAMs and 482 DEGs in the kidney tissues of normal and IgAN mice, respectively. Notably, combined analyses revealed that both DAMs and DEGs were enriched in 3 key pathways: bile secretion, pyruvate metabolism, and cholesterol metabolism.</div></div><div><h3>Conclusion</h3><div>In this article, we identified 3 critical pathways—bile secretion, pyruvate metabolism, and cholesterol metabolism—through a comprehensive analysis of metabolomics and transcriptomics. These pathways may play an important role in affecting metabolic changes in the renal tissue of IgAN mice and provide fresh insights into the pathogenesis of IgAN.</div></div>\",\"PeriodicalId\":12521,\"journal\":{\"name\":\"Genomics\",\"volume\":\"117 5\",\"pages\":\"Article 111076\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888754325000928\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754325000928","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The combined analysis of metabolomics and transcriptomics revealed the metabolic changes of kidney tissue in mice with IgA nephropathy
Background
Immunoglobulin A nephropathy (IgAN) is a globally prevalent primary chronic glomerulopathy and a leading cause of end-stage renal disease. Despite its significance, the underlying mechanisms of IgAN remain poorly understood. This study aims to investigate these mechanisms by integrating metabolomics and transcriptomics approaches.
Methods
We established an IgAN mouse model and conducted pathological analysis using hematoxylin and eosin (HE) staining and immunofluorescent staining. Renal function was assessed by enzyme-linked immunosorbent assay (ELISA) and biochemical assays. Mass spectrometry-based metabolomics was employed to analyze differentially abundant metabolites (DAMs), while transcriptomics was employed to analyze differentially expressed genes (DEGs).
Results
An IgAN mouse model was successfully established. HE staining revealed abnormal proliferation of glomerular mesangial cells, while immunofluorescence staining indicated excessive deposition in the glomerular region. ELISA results showed that IgA levels were significantly elevated in the serum of IgAN mice. Biochemical tests showed that blood creatinine (CRE), blood urea nitrogen (BUN) and urine protein levels were significantly elevated in IgAN mice. Metabolomics and transcriptomics analyses identified 184 DAMs and 482 DEGs in the kidney tissues of normal and IgAN mice, respectively. Notably, combined analyses revealed that both DAMs and DEGs were enriched in 3 key pathways: bile secretion, pyruvate metabolism, and cholesterol metabolism.
Conclusion
In this article, we identified 3 critical pathways—bile secretion, pyruvate metabolism, and cholesterol metabolism—through a comprehensive analysis of metabolomics and transcriptomics. These pathways may play an important role in affecting metabolic changes in the renal tissue of IgAN mice and provide fresh insights into the pathogenesis of IgAN.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.