{"title":"动态时空分布下的自校正变压器网络交通流预测","authors":"Jingru Sun, Ziyu Qiu, Yichuang Sun, Oluyomi Simpson","doi":"10.1049/itr2.70044","DOIUrl":null,"url":null,"abstract":"<p>Precise and timely traffic flow prediction plays a critical role in developing intelligent transportation systems and has attracted considerable attention in recent decades. The traffic flow has a non-stationary character in both time and space, when the drift phenomenon appears, the traffic flow undergoes significant and sudden changes, bringing the challenge to the prediction. This paper proposed a self-supervised learning-based adaptive spatiotemporal self-correction transformer traffic flow prediction network (SCTNet). SCTNet can feel the drift with self-supervised learning, compute distribution features of the test data, obtain the distribution difference signal, feed it into the model as network correction information, and then adjust the spatiotemporal dependence of traffic flow adaptively to enhance prediction accuracy. The self-supervised learning method can adjust the model quickly and smoothly, and be utilized in most existing traffic flow prediction models. The experiments demonstrate that compared to existing models, the proposed self-supervised learning SCTNet has achieved state-of-the-art performance and exhibited strong adaptability to the dynamically changing spatiotemporal distributions of traffic data.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70044","citationCount":"0","resultStr":"{\"title\":\"A Self-Correction Transformer Network for Traffic Flow Prediction Under Dynamic Spatio-Temporal Distributions\",\"authors\":\"Jingru Sun, Ziyu Qiu, Yichuang Sun, Oluyomi Simpson\",\"doi\":\"10.1049/itr2.70044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precise and timely traffic flow prediction plays a critical role in developing intelligent transportation systems and has attracted considerable attention in recent decades. The traffic flow has a non-stationary character in both time and space, when the drift phenomenon appears, the traffic flow undergoes significant and sudden changes, bringing the challenge to the prediction. This paper proposed a self-supervised learning-based adaptive spatiotemporal self-correction transformer traffic flow prediction network (SCTNet). SCTNet can feel the drift with self-supervised learning, compute distribution features of the test data, obtain the distribution difference signal, feed it into the model as network correction information, and then adjust the spatiotemporal dependence of traffic flow adaptively to enhance prediction accuracy. The self-supervised learning method can adjust the model quickly and smoothly, and be utilized in most existing traffic flow prediction models. The experiments demonstrate that compared to existing models, the proposed self-supervised learning SCTNet has achieved state-of-the-art performance and exhibited strong adaptability to the dynamically changing spatiotemporal distributions of traffic data.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Self-Correction Transformer Network for Traffic Flow Prediction Under Dynamic Spatio-Temporal Distributions
Precise and timely traffic flow prediction plays a critical role in developing intelligent transportation systems and has attracted considerable attention in recent decades. The traffic flow has a non-stationary character in both time and space, when the drift phenomenon appears, the traffic flow undergoes significant and sudden changes, bringing the challenge to the prediction. This paper proposed a self-supervised learning-based adaptive spatiotemporal self-correction transformer traffic flow prediction network (SCTNet). SCTNet can feel the drift with self-supervised learning, compute distribution features of the test data, obtain the distribution difference signal, feed it into the model as network correction information, and then adjust the spatiotemporal dependence of traffic flow adaptively to enhance prediction accuracy. The self-supervised learning method can adjust the model quickly and smoothly, and be utilized in most existing traffic flow prediction models. The experiments demonstrate that compared to existing models, the proposed self-supervised learning SCTNet has achieved state-of-the-art performance and exhibited strong adaptability to the dynamically changing spatiotemporal distributions of traffic data.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf