利用人工智能促进ESG绩效:国际商业中国家人工智能能力和可持续性的全球分析

IF 4.2 Q1 BUSINESS
Geeho Jeon
{"title":"利用人工智能促进ESG绩效:国际商业中国家人工智能能力和可持续性的全球分析","authors":"Geeho Jeon","doi":"10.1002/bsd2.70162","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study examines the interplay between national AI capabilities, measured by the Oxford (161 countries), Tortoise (81 countries), and Stanford (36 countries) AI Indices, and Environmental, Social, and Governance (ESG) performance, advancing international business (IB) and sustainability scholarship. We propose AI-enabled ESG capability—a country-level construct integrating AI resources within institutional contexts—as a novel framework, synthesizing Resource-Based View, Institutional Theory, and Knowledge-Based View to address tensions between regulatory pressures and technological advantages. Employing Pearson correlation, hierarchical regression, and <i>K</i>-means clustering, we analyze AI pillars' influence on ESG, controlling for political stability, GDP per capita, internet penetration, and population size. Findings highlight Data and Infrastructure (Oxford, <i>R</i><sup>2</sup> = 0.916), Talent (Tortoise, <i>R</i><sup>2</sup> = 0.936), and Political Stability (Stanford, <i>R</i><sup>2</sup> = 0.850) as primary drivers, with stronger effects in developed economies. Clustering reveals trade-offs: AI-dominant nations lag in ESG, while ESG-strong countries underutilize AI. These insights extend IB theories and guide multinational enterprises (MNEs) and policymakers in aligning AI with ESG through robust governance, digital infrastructure, and STEM education, fostering sustainable global value chains.</p>\n </div>","PeriodicalId":36531,"journal":{"name":"Business Strategy and Development","volume":"8 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging AI for ESG Performance: A Global Analysis of National AI Capabilities and Sustainability in International Business\",\"authors\":\"Geeho Jeon\",\"doi\":\"10.1002/bsd2.70162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study examines the interplay between national AI capabilities, measured by the Oxford (161 countries), Tortoise (81 countries), and Stanford (36 countries) AI Indices, and Environmental, Social, and Governance (ESG) performance, advancing international business (IB) and sustainability scholarship. We propose AI-enabled ESG capability—a country-level construct integrating AI resources within institutional contexts—as a novel framework, synthesizing Resource-Based View, Institutional Theory, and Knowledge-Based View to address tensions between regulatory pressures and technological advantages. Employing Pearson correlation, hierarchical regression, and <i>K</i>-means clustering, we analyze AI pillars' influence on ESG, controlling for political stability, GDP per capita, internet penetration, and population size. Findings highlight Data and Infrastructure (Oxford, <i>R</i><sup>2</sup> = 0.916), Talent (Tortoise, <i>R</i><sup>2</sup> = 0.936), and Political Stability (Stanford, <i>R</i><sup>2</sup> = 0.850) as primary drivers, with stronger effects in developed economies. Clustering reveals trade-offs: AI-dominant nations lag in ESG, while ESG-strong countries underutilize AI. These insights extend IB theories and guide multinational enterprises (MNEs) and policymakers in aligning AI with ESG through robust governance, digital infrastructure, and STEM education, fostering sustainable global value chains.</p>\\n </div>\",\"PeriodicalId\":36531,\"journal\":{\"name\":\"Business Strategy and Development\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Business Strategy and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bsd2.70162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business Strategy and Development","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bsd2.70162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了国家人工智能能力(由牛津(161个国家)、乌龟(81个国家)和斯坦福(36个国家)人工智能指数衡量)与环境、社会和治理(ESG)绩效、推进国际商业(IB)和可持续发展奖学金之间的相互作用。我们提出人工智能支持的ESG能力——在制度背景下整合人工智能资源的国家级构建——作为一个新的框架,综合了资源基础观、制度理论和知识基础观,以解决监管压力和技术优势之间的紧张关系。采用Pearson相关、层次回归和k均值聚类,我们分析了人工智能支柱对ESG的影响,控制了政治稳定性、人均GDP、互联网普及率和人口规模。研究结果强调,数据和基础设施(牛津,R2 = 0.916)、人才(乌龟,R2 = 0.936)和政治稳定(斯坦福,R2 = 0.850)是主要驱动因素,在发达经济体的影响更大。聚类揭示了权衡:人工智能主导的国家在ESG方面落后,而ESG强大的国家没有充分利用人工智能。这些见解扩展了IB理论,并指导跨国企业(MNEs)和政策制定者通过健全的治理、数字基础设施和STEM教育,将人工智能与ESG结合起来,培育可持续的全球价值链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging AI for ESG Performance: A Global Analysis of National AI Capabilities and Sustainability in International Business

This study examines the interplay between national AI capabilities, measured by the Oxford (161 countries), Tortoise (81 countries), and Stanford (36 countries) AI Indices, and Environmental, Social, and Governance (ESG) performance, advancing international business (IB) and sustainability scholarship. We propose AI-enabled ESG capability—a country-level construct integrating AI resources within institutional contexts—as a novel framework, synthesizing Resource-Based View, Institutional Theory, and Knowledge-Based View to address tensions between regulatory pressures and technological advantages. Employing Pearson correlation, hierarchical regression, and K-means clustering, we analyze AI pillars' influence on ESG, controlling for political stability, GDP per capita, internet penetration, and population size. Findings highlight Data and Infrastructure (Oxford, R2 = 0.916), Talent (Tortoise, R2 = 0.936), and Political Stability (Stanford, R2 = 0.850) as primary drivers, with stronger effects in developed economies. Clustering reveals trade-offs: AI-dominant nations lag in ESG, while ESG-strong countries underutilize AI. These insights extend IB theories and guide multinational enterprises (MNEs) and policymakers in aligning AI with ESG through robust governance, digital infrastructure, and STEM education, fostering sustainable global value chains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Business Strategy and Development
Business Strategy and Development Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
5.80
自引率
6.70%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信