{"title":"TPNA10168是一种Nrf2激活剂,通过调节MAPK和NF-κB通路,减轻lps诱导的小胶质细胞炎症","authors":"Yasuhiko Izumi , Eri Koide , Fumika Kobayashi , Saori Ikawa , Midai Takayama , Kouya Yamaki , Norihiko Takeda , Takahiro Yamada , Masafumi Ueda , Toshiaki Kume , Yutaka Koyama","doi":"10.1016/j.jphs.2025.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>The nuclear factor erythroid 2-related factor 2 (Nrf2)–antioxidant response element (ARE) pathway is a major cellular defense mechanism against oxidative stress through the induction of antioxidant proteins. Chemical inducers of Nrf2 often exhibit anti-inflammatory properties. TPNA10168, originally identified as an Nrf2–ARE activator, has previously been shown to attenuate interferon-γ-induced inflammatory responses in BV-2 microglial cells in an Nrf2-independent manner. However, its anti-inflammatory effects on primary microglia remain unclear. In this study, TPNA10168 significantly suppressed the lipopolysaccharide (LPS)-induced expression of inflammatory genes, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, in primary microglia. The anti-inflammatory effects of TPNA10168 persisted even after Nrf2 knockdown. Mechanistic analysis revealed that TPNA10168 inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-κB (NF-κB) p65 without affecting NF-κB nuclear translocation. These findings indicate that TPNA10168 attenuates microglial activation by inhibiting proinflammatory signaling pathways, in part through Nrf2-independent pathways, and is a promising compound for modulating neuroinflammation.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"159 1","pages":"Pages 35-43"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TPNA10168, an Nrf2 activator, attenuates LPS-induced inflammation in microglia through modulation of MAPK and NF-κB pathways\",\"authors\":\"Yasuhiko Izumi , Eri Koide , Fumika Kobayashi , Saori Ikawa , Midai Takayama , Kouya Yamaki , Norihiko Takeda , Takahiro Yamada , Masafumi Ueda , Toshiaki Kume , Yutaka Koyama\",\"doi\":\"10.1016/j.jphs.2025.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nuclear factor erythroid 2-related factor 2 (Nrf2)–antioxidant response element (ARE) pathway is a major cellular defense mechanism against oxidative stress through the induction of antioxidant proteins. Chemical inducers of Nrf2 often exhibit anti-inflammatory properties. TPNA10168, originally identified as an Nrf2–ARE activator, has previously been shown to attenuate interferon-γ-induced inflammatory responses in BV-2 microglial cells in an Nrf2-independent manner. However, its anti-inflammatory effects on primary microglia remain unclear. In this study, TPNA10168 significantly suppressed the lipopolysaccharide (LPS)-induced expression of inflammatory genes, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, in primary microglia. The anti-inflammatory effects of TPNA10168 persisted even after Nrf2 knockdown. Mechanistic analysis revealed that TPNA10168 inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-κB (NF-κB) p65 without affecting NF-κB nuclear translocation. These findings indicate that TPNA10168 attenuates microglial activation by inhibiting proinflammatory signaling pathways, in part through Nrf2-independent pathways, and is a promising compound for modulating neuroinflammation.</div></div>\",\"PeriodicalId\":16786,\"journal\":{\"name\":\"Journal of pharmacological sciences\",\"volume\":\"159 1\",\"pages\":\"Pages 35-43\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1347861325000714\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000714","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
TPNA10168, an Nrf2 activator, attenuates LPS-induced inflammation in microglia through modulation of MAPK and NF-κB pathways
The nuclear factor erythroid 2-related factor 2 (Nrf2)–antioxidant response element (ARE) pathway is a major cellular defense mechanism against oxidative stress through the induction of antioxidant proteins. Chemical inducers of Nrf2 often exhibit anti-inflammatory properties. TPNA10168, originally identified as an Nrf2–ARE activator, has previously been shown to attenuate interferon-γ-induced inflammatory responses in BV-2 microglial cells in an Nrf2-independent manner. However, its anti-inflammatory effects on primary microglia remain unclear. In this study, TPNA10168 significantly suppressed the lipopolysaccharide (LPS)-induced expression of inflammatory genes, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, in primary microglia. The anti-inflammatory effects of TPNA10168 persisted even after Nrf2 knockdown. Mechanistic analysis revealed that TPNA10168 inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-κB (NF-κB) p65 without affecting NF-κB nuclear translocation. These findings indicate that TPNA10168 attenuates microglial activation by inhibiting proinflammatory signaling pathways, in part through Nrf2-independent pathways, and is a promising compound for modulating neuroinflammation.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.