狄利克雷分布和多元伽玛分布的矩型估计

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Ioannis Oikonomidis, Samis Trevezas
{"title":"狄利克雷分布和多元伽玛分布的矩型估计","authors":"Ioannis Oikonomidis,&nbsp;Samis Trevezas","doi":"10.1016/j.jmva.2025.105471","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents new closed-form estimators for the Dirichlet and the multivariate gamma distribution families, whose maximum likelihood estimator cannot be explicitly derived. The methodology builds upon the score-adjusted estimators for the beta and gamma distributions, extending their applicability to the Dirichlet and multivariate gamma distributions. Expressions for the asymptotic variance–covariance matrices are provided, demonstrating the superior performance of score-adjusted estimators over the traditional moment ones. Leveraging well-established connections between the Dirichlet and multivariate gamma distributions, a novel class of estimators for the latter is introduced, referred to as “Dirichlet-based moment-type estimators”. The general asymptotic variance–covariance matrix form for this estimator class is derived. To facilitate the application of these innovative estimators, an <span>R</span> package called <span>joker</span> is developed and made publicly available.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105471"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment-type estimators for the Dirichlet and the multivariate gamma distributions\",\"authors\":\"Ioannis Oikonomidis,&nbsp;Samis Trevezas\",\"doi\":\"10.1016/j.jmva.2025.105471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents new closed-form estimators for the Dirichlet and the multivariate gamma distribution families, whose maximum likelihood estimator cannot be explicitly derived. The methodology builds upon the score-adjusted estimators for the beta and gamma distributions, extending their applicability to the Dirichlet and multivariate gamma distributions. Expressions for the asymptotic variance–covariance matrices are provided, demonstrating the superior performance of score-adjusted estimators over the traditional moment ones. Leveraging well-established connections between the Dirichlet and multivariate gamma distributions, a novel class of estimators for the latter is introduced, referred to as “Dirichlet-based moment-type estimators”. The general asymptotic variance–covariance matrix form for this estimator class is derived. To facilitate the application of these innovative estimators, an <span>R</span> package called <span>joker</span> is developed and made publicly available.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"210 \",\"pages\":\"Article 105471\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000661\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000661","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文针对Dirichlet分布族和多元伽玛分布族的最大似然估计量不能显式导出的问题,提出了新的封闭估计量。该方法建立在beta和gamma分布的分数调整估计器的基础上,将它们的适用性扩展到Dirichlet和多元gamma分布。给出了渐近方差-协方差矩阵的表达式,证明了分数调整估计比传统矩估计具有更好的性能。利用Dirichlet分布和多元伽马分布之间的良好联系,引入了一类新的估计量,称为“基于Dirichlet的矩型估计量”。导出了该类估计量的一般渐近方差-协方差矩阵形式。为了促进这些创新估计器的应用,开发了一个名为joker的R包,并使其公开可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment-type estimators for the Dirichlet and the multivariate gamma distributions
This study presents new closed-form estimators for the Dirichlet and the multivariate gamma distribution families, whose maximum likelihood estimator cannot be explicitly derived. The methodology builds upon the score-adjusted estimators for the beta and gamma distributions, extending their applicability to the Dirichlet and multivariate gamma distributions. Expressions for the asymptotic variance–covariance matrices are provided, demonstrating the superior performance of score-adjusted estimators over the traditional moment ones. Leveraging well-established connections between the Dirichlet and multivariate gamma distributions, a novel class of estimators for the latter is introduced, referred to as “Dirichlet-based moment-type estimators”. The general asymptotic variance–covariance matrix form for this estimator class is derived. To facilitate the application of these innovative estimators, an R package called joker is developed and made publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信