Philippe Leleux , Christina Schwarz , Martin J. Kühn , Carola Kruse , Ulrich Rüde
{"title":"融合等离子体曲线坐标表示的无矩阵外推几何多网格求解器的复杂性分析和可扩展性","authors":"Philippe Leleux , Christina Schwarz , Martin J. Kühn , Carola Kruse , Ulrich Rüde","doi":"10.1016/j.jpdc.2025.105143","DOIUrl":null,"url":null,"abstract":"<div><div>Tokamak fusion reactors are promising alternatives for future energy production. Gyrokinetic simulations are important tools to understand physical processes inside tokamaks and to improve the design of future plants. In gyrokinetic codes such as Gysela, these simulations involve at each time step the solution of a gyrokinetic Poisson equation defined on disk-like cross sections. The authors of <span><span>[14]</span></span>, <span><span>[15]</span></span> proposed to discretize a simplified differential equation using symmetric finite differences derived from the resulting energy functional and to use an implicitly extrapolated geometric multigrid scheme tailored to problems in curvilinear coordinates. In this article, we extend the discretization to a more realistic partial differential equation and demonstrate the optimal linear complexity of the proposed solver, in terms of computation and memory. We provide a general framework to analyze floating point operations and memory usage of matrix-free approaches for stencil-based operators. Finally, we give an efficient matrix-free implementation for the considered solver exploiting a task-based multithreaded parallelism which takes advantage of the disk-shaped geometry of the problem. We demonstrate the parallel efficiency for the solution of problems of size up to 50 million unknowns.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"205 ","pages":"Article 105143"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver for curvilinear coordinates representations from fusion plasma applications\",\"authors\":\"Philippe Leleux , Christina Schwarz , Martin J. Kühn , Carola Kruse , Ulrich Rüde\",\"doi\":\"10.1016/j.jpdc.2025.105143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tokamak fusion reactors are promising alternatives for future energy production. Gyrokinetic simulations are important tools to understand physical processes inside tokamaks and to improve the design of future plants. In gyrokinetic codes such as Gysela, these simulations involve at each time step the solution of a gyrokinetic Poisson equation defined on disk-like cross sections. The authors of <span><span>[14]</span></span>, <span><span>[15]</span></span> proposed to discretize a simplified differential equation using symmetric finite differences derived from the resulting energy functional and to use an implicitly extrapolated geometric multigrid scheme tailored to problems in curvilinear coordinates. In this article, we extend the discretization to a more realistic partial differential equation and demonstrate the optimal linear complexity of the proposed solver, in terms of computation and memory. We provide a general framework to analyze floating point operations and memory usage of matrix-free approaches for stencil-based operators. Finally, we give an efficient matrix-free implementation for the considered solver exploiting a task-based multithreaded parallelism which takes advantage of the disk-shaped geometry of the problem. We demonstrate the parallel efficiency for the solution of problems of size up to 50 million unknowns.</div></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"205 \",\"pages\":\"Article 105143\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731525001108\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525001108","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver for curvilinear coordinates representations from fusion plasma applications
Tokamak fusion reactors are promising alternatives for future energy production. Gyrokinetic simulations are important tools to understand physical processes inside tokamaks and to improve the design of future plants. In gyrokinetic codes such as Gysela, these simulations involve at each time step the solution of a gyrokinetic Poisson equation defined on disk-like cross sections. The authors of [14], [15] proposed to discretize a simplified differential equation using symmetric finite differences derived from the resulting energy functional and to use an implicitly extrapolated geometric multigrid scheme tailored to problems in curvilinear coordinates. In this article, we extend the discretization to a more realistic partial differential equation and demonstrate the optimal linear complexity of the proposed solver, in terms of computation and memory. We provide a general framework to analyze floating point operations and memory usage of matrix-free approaches for stencil-based operators. Finally, we give an efficient matrix-free implementation for the considered solver exploiting a task-based multithreaded parallelism which takes advantage of the disk-shaped geometry of the problem. We demonstrate the parallel efficiency for the solution of problems of size up to 50 million unknowns.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.