Anna Bublex, Amalric Montalibet, Bertrand Massot, Claudine Gehin
{"title":"模拟活体组织电学性能和机械强度的模型研究进展","authors":"Anna Bublex, Amalric Montalibet, Bertrand Massot, Claudine Gehin","doi":"10.1016/j.irbm.2025.100904","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Phantoms are increasingly preferred and essential in research for applications such as imaging device calibration or sensor validation. They offer significant advantages in terms of measurement repeatability and reproducibility, long-term stability, cost effectiveness, ease of storage, and the absence of ethical concerns. This review aims to analyse the materials and fabrication techniques used to develop phantoms that replicate the electrical properties of human tissues while ensuring comparable mechanical strength.</div></div><div><h3>Materials and Methods</h3><div>To establish relevant design criteria and define the requirements for phantom fabrication, a preliminary review of the electrical and mechanical properties of biological tissues was conducted, along with an analysis of measurement techniques such as bioimpedance. A comprehensive review of the literature was then performed to assess various phantom materials, including intrinsically biomimetic materials, natural and synthetic polymers, with a focus on their electrical and mechanical properties, long-term stability, and environmental impact. Additionally, the review considered whether the phantoms were anthropomorphic, designed to closely mimic human anatomy, or simplified, depending on the experimental requirements.</div></div><div><h3>Results</h3><div>Biological materials, including vegetables and animal flesh, possess electrical properties that approximate those of human tissues but are limited by issues such as rapid degradation over time and potential ethical concerns. Natural polymers, such as gelling agents, are easy to use, however, they require stabilisers and fillers to enhance stability and electrical properties. These polymers exhibit reduce mechanical strength in comparison to living tissues. Synthetic materials, including silicones and elastomers, offer superior mechanical strength but require fillers to mimic electrical properties. Among these, polyvinyl alcohol (PVA) stands out as an environmentally friendly alternative.</div></div><div><h3>Conclusion</h3><div>The selection of materials for phantom fabrication involves a trade-off between mechanical performance, electrical properties and environmental considerations. Advances in sustainable materials offer promising directions for improving phantom design.</div></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"46 5","pages":"Article 100904"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Phantoms for Mimicking the Electrical Properties and Mechanical Strength of Living Tissue\",\"authors\":\"Anna Bublex, Amalric Montalibet, Bertrand Massot, Claudine Gehin\",\"doi\":\"10.1016/j.irbm.2025.100904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Phantoms are increasingly preferred and essential in research for applications such as imaging device calibration or sensor validation. They offer significant advantages in terms of measurement repeatability and reproducibility, long-term stability, cost effectiveness, ease of storage, and the absence of ethical concerns. This review aims to analyse the materials and fabrication techniques used to develop phantoms that replicate the electrical properties of human tissues while ensuring comparable mechanical strength.</div></div><div><h3>Materials and Methods</h3><div>To establish relevant design criteria and define the requirements for phantom fabrication, a preliminary review of the electrical and mechanical properties of biological tissues was conducted, along with an analysis of measurement techniques such as bioimpedance. A comprehensive review of the literature was then performed to assess various phantom materials, including intrinsically biomimetic materials, natural and synthetic polymers, with a focus on their electrical and mechanical properties, long-term stability, and environmental impact. Additionally, the review considered whether the phantoms were anthropomorphic, designed to closely mimic human anatomy, or simplified, depending on the experimental requirements.</div></div><div><h3>Results</h3><div>Biological materials, including vegetables and animal flesh, possess electrical properties that approximate those of human tissues but are limited by issues such as rapid degradation over time and potential ethical concerns. Natural polymers, such as gelling agents, are easy to use, however, they require stabilisers and fillers to enhance stability and electrical properties. These polymers exhibit reduce mechanical strength in comparison to living tissues. Synthetic materials, including silicones and elastomers, offer superior mechanical strength but require fillers to mimic electrical properties. Among these, polyvinyl alcohol (PVA) stands out as an environmentally friendly alternative.</div></div><div><h3>Conclusion</h3><div>The selection of materials for phantom fabrication involves a trade-off between mechanical performance, electrical properties and environmental considerations. Advances in sustainable materials offer promising directions for improving phantom design.</div></div>\",\"PeriodicalId\":14605,\"journal\":{\"name\":\"Irbm\",\"volume\":\"46 5\",\"pages\":\"Article 100904\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irbm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1959031825000296\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031825000296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Review of Phantoms for Mimicking the Electrical Properties and Mechanical Strength of Living Tissue
Objectives
Phantoms are increasingly preferred and essential in research for applications such as imaging device calibration or sensor validation. They offer significant advantages in terms of measurement repeatability and reproducibility, long-term stability, cost effectiveness, ease of storage, and the absence of ethical concerns. This review aims to analyse the materials and fabrication techniques used to develop phantoms that replicate the electrical properties of human tissues while ensuring comparable mechanical strength.
Materials and Methods
To establish relevant design criteria and define the requirements for phantom fabrication, a preliminary review of the electrical and mechanical properties of biological tissues was conducted, along with an analysis of measurement techniques such as bioimpedance. A comprehensive review of the literature was then performed to assess various phantom materials, including intrinsically biomimetic materials, natural and synthetic polymers, with a focus on their electrical and mechanical properties, long-term stability, and environmental impact. Additionally, the review considered whether the phantoms were anthropomorphic, designed to closely mimic human anatomy, or simplified, depending on the experimental requirements.
Results
Biological materials, including vegetables and animal flesh, possess electrical properties that approximate those of human tissues but are limited by issues such as rapid degradation over time and potential ethical concerns. Natural polymers, such as gelling agents, are easy to use, however, they require stabilisers and fillers to enhance stability and electrical properties. These polymers exhibit reduce mechanical strength in comparison to living tissues. Synthetic materials, including silicones and elastomers, offer superior mechanical strength but require fillers to mimic electrical properties. Among these, polyvinyl alcohol (PVA) stands out as an environmentally friendly alternative.
Conclusion
The selection of materials for phantom fabrication involves a trade-off between mechanical performance, electrical properties and environmental considerations. Advances in sustainable materials offer promising directions for improving phantom design.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…