Pieter J.L. Cuijpers , Jonas Hansen , Kim G. Larsen
{"title":"基于能量时间自动机的安全无限资源调度","authors":"Pieter J.L. Cuijpers , Jonas Hansen , Kim G. Larsen","doi":"10.1016/j.scico.2025.103358","DOIUrl":null,"url":null,"abstract":"<div><div>We study the existence of infinite and safe schedules for resource-dependent real-time systems, in the setting of multiple continuous resources. Specifically, we explore the multi-variable extension of Energy Timed Automata, where variables are bounded by polyhedra in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We ask the question of whether there exist infinite runs satisfying such boundary constraints and show how schedules can be synthesized by characterising these runs as limit sets using quantifier elimination for linear real arithmetic. We show that for linear limit sets, it is possible to characterise such infinite runs.</div><div>Additionally, we relate this to an earlier decidability result for single-variable Energy Timed Automata that are flat and segmented, and show constructively that there exist flat and segmented multi-variable Energy Timed Automata that give rise to non-linear limit sets.</div><div>Lastly, we solidify our framework and method with a case study. Specifically, a multi-agent extension of an industrial case concerned with oil tanks, originally provided by the HYDAC company.</div></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"247 ","pages":"Article 103358"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe and infinite resource scheduling using energy timed automata\",\"authors\":\"Pieter J.L. Cuijpers , Jonas Hansen , Kim G. Larsen\",\"doi\":\"10.1016/j.scico.2025.103358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the existence of infinite and safe schedules for resource-dependent real-time systems, in the setting of multiple continuous resources. Specifically, we explore the multi-variable extension of Energy Timed Automata, where variables are bounded by polyhedra in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We ask the question of whether there exist infinite runs satisfying such boundary constraints and show how schedules can be synthesized by characterising these runs as limit sets using quantifier elimination for linear real arithmetic. We show that for linear limit sets, it is possible to characterise such infinite runs.</div><div>Additionally, we relate this to an earlier decidability result for single-variable Energy Timed Automata that are flat and segmented, and show constructively that there exist flat and segmented multi-variable Energy Timed Automata that give rise to non-linear limit sets.</div><div>Lastly, we solidify our framework and method with a case study. Specifically, a multi-agent extension of an industrial case concerned with oil tanks, originally provided by the HYDAC company.</div></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"247 \",\"pages\":\"Article 103358\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642325000978\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642325000978","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Safe and infinite resource scheduling using energy timed automata
We study the existence of infinite and safe schedules for resource-dependent real-time systems, in the setting of multiple continuous resources. Specifically, we explore the multi-variable extension of Energy Timed Automata, where variables are bounded by polyhedra in . We ask the question of whether there exist infinite runs satisfying such boundary constraints and show how schedules can be synthesized by characterising these runs as limit sets using quantifier elimination for linear real arithmetic. We show that for linear limit sets, it is possible to characterise such infinite runs.
Additionally, we relate this to an earlier decidability result for single-variable Energy Timed Automata that are flat and segmented, and show constructively that there exist flat and segmented multi-variable Energy Timed Automata that give rise to non-linear limit sets.
Lastly, we solidify our framework and method with a case study. Specifically, a multi-agent extension of an industrial case concerned with oil tanks, originally provided by the HYDAC company.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.