基于有限多同态计数的算法

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Yijia Chen , Jörg Flum , Mingjun Liu , Zhiyang Xun
{"title":"基于有限多同态计数的算法","authors":"Yijia Chen ,&nbsp;Jörg Flum ,&nbsp;Mingjun Liu ,&nbsp;Zhiyang Xun","doi":"10.1016/j.ic.2025.105326","DOIUrl":null,"url":null,"abstract":"<div><div>It is a well-known result of Lovász that up to isomorphism a graph <em>G</em> is determined by the homomorphism counts <span><math><mtext>hom</mtext><mo>(</mo><mi>F</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span>, i.e., the number of homomorphisms from <em>F</em> to <em>G</em>, where <em>F</em> ranges over all graphs. Thus, in principle, we can answer any query concerning <em>G</em> with only accessing the <span><math><mtext>hom</mtext><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>G</mi><mo>)</mo></math></span>'s instead of <em>G</em> itself. In this paper, we deal with queries <em>φ</em> for which there is a <em>hom algorithm</em>, i.e., there are <em>finitely many</em> graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that for any graph <em>G</em> whether it is a <span>Yes</span>-instance of the query is already determined by the vector<span><span><span><math><msub><mrow><mover><mrow><mtext>hom</mtext></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>(</mo><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where the graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> only depend on <em>φ</em>.</div><div>We observe that planarity of graphs and 3-colorability of graphs, properties expressible in monadic second-order logic, have no hom algorithm. We provide a characterization of the prefix classes of first-order logic with the property that each query definable by a sentence of the prefix class has a hom algorithm.</div><div>For <em>adaptive</em> query algorithms, i.e., algorithms that again access <span><math><msub><mrow><mover><mrow><mtext>hom</mtext></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> but here <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> might depend on <span><math><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></math></span>, we show that <em>three</em> homomorphism counts <span><math><mtext>hom</mtext><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>G</mi><mo>)</mo></math></span> are both sufficient and in general necessary to determine the isomorphism type of <em>G</em>.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"306 ","pages":"Article 105326"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On algorithms based on finitely many homomorphism counts\",\"authors\":\"Yijia Chen ,&nbsp;Jörg Flum ,&nbsp;Mingjun Liu ,&nbsp;Zhiyang Xun\",\"doi\":\"10.1016/j.ic.2025.105326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is a well-known result of Lovász that up to isomorphism a graph <em>G</em> is determined by the homomorphism counts <span><math><mtext>hom</mtext><mo>(</mo><mi>F</mi><mo>,</mo><mi>G</mi><mo>)</mo></math></span>, i.e., the number of homomorphisms from <em>F</em> to <em>G</em>, where <em>F</em> ranges over all graphs. Thus, in principle, we can answer any query concerning <em>G</em> with only accessing the <span><math><mtext>hom</mtext><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>G</mi><mo>)</mo></math></span>'s instead of <em>G</em> itself. In this paper, we deal with queries <em>φ</em> for which there is a <em>hom algorithm</em>, i.e., there are <em>finitely many</em> graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that for any graph <em>G</em> whether it is a <span>Yes</span>-instance of the query is already determined by the vector<span><span><span><math><msub><mrow><mover><mrow><mtext>hom</mtext></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>(</mo><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where the graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> only depend on <em>φ</em>.</div><div>We observe that planarity of graphs and 3-colorability of graphs, properties expressible in monadic second-order logic, have no hom algorithm. We provide a characterization of the prefix classes of first-order logic with the property that each query definable by a sentence of the prefix class has a hom algorithm.</div><div>For <em>adaptive</em> query algorithms, i.e., algorithms that again access <span><math><msub><mrow><mover><mrow><mtext>hom</mtext></mrow><mrow><mo>→</mo></mrow></mover></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> but here <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> might depend on <span><math><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mtext>hom</mtext><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>G</mi><mo>)</mo></math></span>, we show that <em>three</em> homomorphism counts <span><math><mtext>hom</mtext><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>G</mi><mo>)</mo></math></span> are both sufficient and in general necessary to determine the isomorphism type of <em>G</em>.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"306 \",\"pages\":\"Article 105326\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540125000628\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540125000628","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

这是Lovász的一个众所周知的结果,在同构之前,图G是由同态计数homm (F,G)决定的,即从F到G的同态数,其中F的范围在所有图上。因此,原则上,我们可以回答任何关于G的查询,只需访问home(⋅,G),而不访问G本身。在本文中,我们处理了φ存在一个homm算法的查询,即有有限多个图F1,…,Fk,使得对于任意图G,它是否是查询的yes实例已经由向量→F1,…,Fk(G):=(homm (F1,G),…,homm (Fk,G))决定,其中图F1,…,Fk只依赖于φ。我们观察到图的平面性和图的3色性,这些性质在一元二阶逻辑中是可表示的,没有合适的算法。我们给出了一阶逻辑的前缀类的一个表征,其性质是每个可由前缀类的一个句子定义的查询都有一个homm算法。对于自适应查询算法,即再次访问hom→F1,…,Fk(G)的算法,但这里的Fi+1可能依赖于hom(F1,G),…,hom(Fi,G),我们证明了三个同态计数hom(⋅,G)对于确定G的同态类型是充分的,并且通常是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On algorithms based on finitely many homomorphism counts
It is a well-known result of Lovász that up to isomorphism a graph G is determined by the homomorphism counts hom(F,G), i.e., the number of homomorphisms from F to G, where F ranges over all graphs. Thus, in principle, we can answer any query concerning G with only accessing the hom(,G)'s instead of G itself. In this paper, we deal with queries φ for which there is a hom algorithm, i.e., there are finitely many graphs F1,,Fk such that for any graph G whether it is a Yes-instance of the query is already determined by the vectorhomF1,,Fk(G):=(hom(F1,G),,hom(Fk,G)), where the graphs F1,,Fk only depend on φ.
We observe that planarity of graphs and 3-colorability of graphs, properties expressible in monadic second-order logic, have no hom algorithm. We provide a characterization of the prefix classes of first-order logic with the property that each query definable by a sentence of the prefix class has a hom algorithm.
For adaptive query algorithms, i.e., algorithms that again access homF1,,Fk(G) but here Fi+1 might depend on hom(F1,G),,hom(Fi,G), we show that three homomorphism counts hom(,G) are both sufficient and in general necessary to determine the isomorphism type of G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信