熔体纺丝Co: LaFe13−x6条带的近室温磁热效应:提高δTFWHM和居里温度

IF 4.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Anjana Vinod , D. Arvindha Babu , W. Madhuri
{"title":"熔体纺丝Co: LaFe13−x6条带的近室温磁热效应:提高δTFWHM和居里温度","authors":"Anjana Vinod ,&nbsp;D. Arvindha Babu ,&nbsp;W. Madhuri","doi":"10.1016/j.intermet.2025.108896","DOIUrl":null,"url":null,"abstract":"<div><div>We report the development of high-performance cobalt-doped lanthanum iron silicon (<em>La-Fe-Co-Si</em>) alloys, synthesized via rapid solidification and short annealing, exhibiting optimal magnetic properties for magnetic refrigeration applications. The structural and microstructural analysis reveals a predominant cubic <span><math><mrow><mi>N</mi><mi>a</mi><msub><mrow><mi>Z</mi><mi>n</mi></mrow><mn>13</mn></msub></mrow></math></span>-type phase, corresponding to <span><math><mrow><mi>L</mi><mi>a</mi><msub><mrow><mo>(</mo><mrow><mi>F</mi><mi>e</mi><mo>,</mo><mi>S</mi><mi>i</mi></mrow><mo>)</mo></mrow><mn>13</mn></msub></mrow></math></span>, a material paradigmatic of superior magnetocaloric performance, thereby underscoring its potential for efficacious room-temperature magnetic refrigeration. However, Magnetization studies demonstrate a monotonic increase in Curie transition temperature with Co content, tunable to room temperature. The alloys exhibit a significant change in entropy <span><math><mrow><mo>(</mo><mo>−</mo><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span>),2.70–3.99 <span><math><mrow><mfrac><mi>J</mi><mrow><mi>k</mi><mi>g</mi><mo>.</mo><mi>K</mi></mrow></mfrac></mrow></math></span> at 2.5 <em>T</em>, with a wide half-height width (39–45 <em>K</em>) and notable relative cooling power (108–156 <span><math><mrow><mfrac><mi>J</mi><mrow><mi>k</mi><mi>g</mi></mrow></mfrac></mrow></math></span>). Critical exponent analysis confirms a second-order phase transition. Our findings demonstrate the feasibility of producing Co-doped <span><math><mrow><mi>L</mi><mi>a</mi><msub><mrow><mo>(</mo><mrow><mi>F</mi><mi>e</mi><mo>,</mo><mi>S</mi><mi>i</mi></mrow><mo>)</mo></mrow><mn>13</mn></msub></mrow></math></span> alloys with near-room-temperature transition and large <span><math><mrow><mo>−</mo><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span> through alloy design and melt-spinning processing, offering promising candidates for magnetic refrigeration applications.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"185 ","pages":"Article 108896"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near room temperature magnetocaloric effect in Co: LaFe13−xSix ribbons through melt Spinning: Boosting δTFWHM and Curie temperature\",\"authors\":\"Anjana Vinod ,&nbsp;D. Arvindha Babu ,&nbsp;W. Madhuri\",\"doi\":\"10.1016/j.intermet.2025.108896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report the development of high-performance cobalt-doped lanthanum iron silicon (<em>La-Fe-Co-Si</em>) alloys, synthesized via rapid solidification and short annealing, exhibiting optimal magnetic properties for magnetic refrigeration applications. The structural and microstructural analysis reveals a predominant cubic <span><math><mrow><mi>N</mi><mi>a</mi><msub><mrow><mi>Z</mi><mi>n</mi></mrow><mn>13</mn></msub></mrow></math></span>-type phase, corresponding to <span><math><mrow><mi>L</mi><mi>a</mi><msub><mrow><mo>(</mo><mrow><mi>F</mi><mi>e</mi><mo>,</mo><mi>S</mi><mi>i</mi></mrow><mo>)</mo></mrow><mn>13</mn></msub></mrow></math></span>, a material paradigmatic of superior magnetocaloric performance, thereby underscoring its potential for efficacious room-temperature magnetic refrigeration. However, Magnetization studies demonstrate a monotonic increase in Curie transition temperature with Co content, tunable to room temperature. The alloys exhibit a significant change in entropy <span><math><mrow><mo>(</mo><mo>−</mo><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span>),2.70–3.99 <span><math><mrow><mfrac><mi>J</mi><mrow><mi>k</mi><mi>g</mi><mo>.</mo><mi>K</mi></mrow></mfrac></mrow></math></span> at 2.5 <em>T</em>, with a wide half-height width (39–45 <em>K</em>) and notable relative cooling power (108–156 <span><math><mrow><mfrac><mi>J</mi><mrow><mi>k</mi><mi>g</mi></mrow></mfrac></mrow></math></span>). Critical exponent analysis confirms a second-order phase transition. Our findings demonstrate the feasibility of producing Co-doped <span><math><mrow><mi>L</mi><mi>a</mi><msub><mrow><mo>(</mo><mrow><mi>F</mi><mi>e</mi><mo>,</mo><mi>S</mi><mi>i</mi></mrow><mo>)</mo></mrow><mn>13</mn></msub></mrow></math></span> alloys with near-room-temperature transition and large <span><math><mrow><mo>−</mo><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub></mrow></math></span> through alloy design and melt-spinning processing, offering promising candidates for magnetic refrigeration applications.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"185 \",\"pages\":\"Article 108896\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979525002614\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979525002614","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了高性能钴掺杂镧铁硅(La-Fe-Co-Si)合金的发展,通过快速凝固和短时间退火合成,具有最佳的磁性能,适用于磁制冷应用。结构和微观结构分析揭示了主要的立方nazn13型相,对应于La(Fe,Si)13,这是一种具有优越磁热性能的材料范式,从而强调了其在室温磁制冷方面的潜力。然而,磁化研究表明,居里转变温度随Co含量的增加而单调增加,可调至室温。合金的熵变化显著(−ΔSM),为2.70 ~ 3.99 Jkg。K在2.5 T时,具有较宽的半高宽度(39-45 K)和显著的相对冷却功率(108-156 Jkg)。临界指数分析证实了二阶相变。我们的研究结果证明了通过合金设计和熔融纺丝工艺生产具有近室温转变和大- ΔSM的共掺杂La(Fe,Si)13合金的可行性,为磁制冷应用提供了有希望的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Near room temperature magnetocaloric effect in Co: LaFe13−xSix ribbons through melt Spinning: Boosting δTFWHM and Curie temperature

Near room temperature magnetocaloric effect in Co: LaFe13−xSix ribbons through melt Spinning: Boosting δTFWHM and Curie temperature
We report the development of high-performance cobalt-doped lanthanum iron silicon (La-Fe-Co-Si) alloys, synthesized via rapid solidification and short annealing, exhibiting optimal magnetic properties for magnetic refrigeration applications. The structural and microstructural analysis reveals a predominant cubic NaZn13-type phase, corresponding to La(Fe,Si)13, a material paradigmatic of superior magnetocaloric performance, thereby underscoring its potential for efficacious room-temperature magnetic refrigeration. However, Magnetization studies demonstrate a monotonic increase in Curie transition temperature with Co content, tunable to room temperature. The alloys exhibit a significant change in entropy (ΔSM),2.70–3.99 Jkg.K at 2.5 T, with a wide half-height width (39–45 K) and notable relative cooling power (108–156 Jkg). Critical exponent analysis confirms a second-order phase transition. Our findings demonstrate the feasibility of producing Co-doped La(Fe,Si)13 alloys with near-room-temperature transition and large ΔSM through alloy design and melt-spinning processing, offering promising candidates for magnetic refrigeration applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信