{"title":"分数乘法演算中的阿达玛函数积分算子","authors":"Tingsong Du , Ziyi Zhou , Zongrui Tan","doi":"10.1016/j.chaos.2025.116710","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on analyzing multiplicative Hadamard functional fractional integral operators and applies them to establish Bullen-type inequalities for twice <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>differentiable functions. The investigation begins with the formalization of Hadamard functional integrals in fractional multiplicative calculus, followed by an analysis of their fundamental properties, including continuity, boundedness, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>integrability, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>linearity, and others. Based on the introduced operators again, we derive a fractional integral identity to establish bounds for Bullen-type inequalities. Our results hold under the assumptions that either (i) the second multiplicative derivative <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> is multiplicatively convex, or (ii) <span><math><msup><mrow><mrow><mo>(</mo><mi>ln</mi><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> is convex for <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span>. Additionally, we provide insights into the case <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116710"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hadamard functional integral operators within fractional multiplicative calculus\",\"authors\":\"Tingsong Du , Ziyi Zhou , Zongrui Tan\",\"doi\":\"10.1016/j.chaos.2025.116710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research focuses on analyzing multiplicative Hadamard functional fractional integral operators and applies them to establish Bullen-type inequalities for twice <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>differentiable functions. The investigation begins with the formalization of Hadamard functional integrals in fractional multiplicative calculus, followed by an analysis of their fundamental properties, including continuity, boundedness, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>integrability, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>linearity, and others. Based on the introduced operators again, we derive a fractional integral identity to establish bounds for Bullen-type inequalities. Our results hold under the assumptions that either (i) the second multiplicative derivative <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> is multiplicatively convex, or (ii) <span><math><msup><mrow><mrow><mo>(</mo><mi>ln</mi><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> is convex for <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span>. Additionally, we provide insights into the case <span><math><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116710\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007234\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007234","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hadamard functional integral operators within fractional multiplicative calculus
This research focuses on analyzing multiplicative Hadamard functional fractional integral operators and applies them to establish Bullen-type inequalities for twice differentiable functions. The investigation begins with the formalization of Hadamard functional integrals in fractional multiplicative calculus, followed by an analysis of their fundamental properties, including continuity, boundedness, integrability, linearity, and others. Based on the introduced operators again, we derive a fractional integral identity to establish bounds for Bullen-type inequalities. Our results hold under the assumptions that either (i) the second multiplicative derivative is multiplicatively convex, or (ii) is convex for . Additionally, we provide insights into the case .
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.