分数乘法演算中的阿达玛函数积分算子

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Tingsong Du , Ziyi Zhou , Zongrui Tan
{"title":"分数乘法演算中的阿达玛函数积分算子","authors":"Tingsong Du ,&nbsp;Ziyi Zhou ,&nbsp;Zongrui Tan","doi":"10.1016/j.chaos.2025.116710","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on analyzing multiplicative Hadamard functional fractional integral operators and applies them to establish Bullen-type inequalities for twice <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>differentiable functions. The investigation begins with the formalization of Hadamard functional integrals in fractional multiplicative calculus, followed by an analysis of their fundamental properties, including continuity, boundedness, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>integrability, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>linearity, and others. Based on the introduced operators again, we derive a fractional integral identity to establish bounds for Bullen-type inequalities. Our results hold under the assumptions that either (i) the second multiplicative derivative <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> is multiplicatively convex, or (ii) <span><math><msup><mrow><mrow><mo>(</mo><mi>ln</mi><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> is convex for <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Additionally, we provide insights into the case <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116710"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hadamard functional integral operators within fractional multiplicative calculus\",\"authors\":\"Tingsong Du ,&nbsp;Ziyi Zhou ,&nbsp;Zongrui Tan\",\"doi\":\"10.1016/j.chaos.2025.116710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research focuses on analyzing multiplicative Hadamard functional fractional integral operators and applies them to establish Bullen-type inequalities for twice <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>differentiable functions. The investigation begins with the formalization of Hadamard functional integrals in fractional multiplicative calculus, followed by an analysis of their fundamental properties, including continuity, boundedness, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>integrability, <span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span>linearity, and others. Based on the introduced operators again, we derive a fractional integral identity to establish bounds for Bullen-type inequalities. Our results hold under the assumptions that either (i) the second multiplicative derivative <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup></math></span> is multiplicatively convex, or (ii) <span><math><msup><mrow><mrow><mo>(</mo><mi>ln</mi><msup><mrow><mi>P</mi></mrow><mrow><mo>∗</mo><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> is convex for <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. Additionally, we provide insights into the case <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116710\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925007234\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007234","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要分析乘法Hadamard泛函分数阶积分算子,并应用它们建立二次*可微函数的bullen型不等式。本研究以分数乘演算中Hadamard泛函积分的形式化开始,接着分析其基本性质,包括连续性、有界性、可积性、线性性等。在引入算子的基础上,导出了分数阶积分恒等式,建立了bullen型不等式的界。我们的结果在以下假设下成立:(i)第二个乘性导数P∗是乘性凸的,或(ii) (lnP∗)q1对于q1>;1是凸的。此外,我们还提供了对情况0<;q1≤1的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hadamard functional integral operators within fractional multiplicative calculus
This research focuses on analyzing multiplicative Hadamard functional fractional integral operators and applies them to establish Bullen-type inequalities for twice differentiable functions. The investigation begins with the formalization of Hadamard functional integrals in fractional multiplicative calculus, followed by an analysis of their fundamental properties, including continuity, boundedness, integrability, linearity, and others. Based on the introduced operators again, we derive a fractional integral identity to establish bounds for Bullen-type inequalities. Our results hold under the assumptions that either (i) the second multiplicative derivative P is multiplicatively convex, or (ii) (lnP)q1 is convex for q1>1. Additionally, we provide insights into the case 0<q11.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信