René Rasche,Lisa Helene Apken,Sonja Titze,Esther Michalke,Rohit Kumar Singh,Andrea Oeckinghaus,Daniel Kümmel
{"title":"GTPase κB-Ras是RalGAP肿瘤抑制复合物的重要亚基。","authors":"René Rasche,Lisa Helene Apken,Sonja Titze,Esther Michalke,Rohit Kumar Singh,Andrea Oeckinghaus,Daniel Kümmel","doi":"10.1016/j.jbc.2025.110460","DOIUrl":null,"url":null,"abstract":"κB-Ras1 and κB-Ras2 are small GTPases with non-canonical features that act as tumor suppressors downstream of Ras. Via interaction with the RalGAP (GTPase activating protein) complex, they limit activity of Ral GTPases and restrict anchorage-independent proliferation. We here present the crystal structure of κB-Ras1 in complex with the N-terminal domain of RGα2. The structure suggests a mechanism of intrinsic GTP hydrolysis of κB-Ras1 that relies on a scaffolding function of the GTPase rather than on catalytic residues, which we confirm by mutational analysis. The interaction with RGα2 is nucleotide-independent and does not involve κB-Ras1 switch regions, which establishes κB-Ras proteins as a constitutive third subunit of RalGAP complexes. Functional studies demonstrate that κB-Ras proteins are not required for RalGAP catalytic activity in vitro, but for functionality in vivo. We propose that κB-Ras may thus act as regulator of RalGAP localization and thereby control the Ras/Ral signaling pathway.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"48 1","pages":"110460"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The GTPase κB-Ras is an essential subunit of the RalGAP tumor suppressor complex.\",\"authors\":\"René Rasche,Lisa Helene Apken,Sonja Titze,Esther Michalke,Rohit Kumar Singh,Andrea Oeckinghaus,Daniel Kümmel\",\"doi\":\"10.1016/j.jbc.2025.110460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"κB-Ras1 and κB-Ras2 are small GTPases with non-canonical features that act as tumor suppressors downstream of Ras. Via interaction with the RalGAP (GTPase activating protein) complex, they limit activity of Ral GTPases and restrict anchorage-independent proliferation. We here present the crystal structure of κB-Ras1 in complex with the N-terminal domain of RGα2. The structure suggests a mechanism of intrinsic GTP hydrolysis of κB-Ras1 that relies on a scaffolding function of the GTPase rather than on catalytic residues, which we confirm by mutational analysis. The interaction with RGα2 is nucleotide-independent and does not involve κB-Ras1 switch regions, which establishes κB-Ras proteins as a constitutive third subunit of RalGAP complexes. Functional studies demonstrate that κB-Ras proteins are not required for RalGAP catalytic activity in vitro, but for functionality in vivo. We propose that κB-Ras may thus act as regulator of RalGAP localization and thereby control the Ras/Ral signaling pathway.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"48 1\",\"pages\":\"110460\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110460\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110460","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The GTPase κB-Ras is an essential subunit of the RalGAP tumor suppressor complex.
κB-Ras1 and κB-Ras2 are small GTPases with non-canonical features that act as tumor suppressors downstream of Ras. Via interaction with the RalGAP (GTPase activating protein) complex, they limit activity of Ral GTPases and restrict anchorage-independent proliferation. We here present the crystal structure of κB-Ras1 in complex with the N-terminal domain of RGα2. The structure suggests a mechanism of intrinsic GTP hydrolysis of κB-Ras1 that relies on a scaffolding function of the GTPase rather than on catalytic residues, which we confirm by mutational analysis. The interaction with RGα2 is nucleotide-independent and does not involve κB-Ras1 switch regions, which establishes κB-Ras proteins as a constitutive third subunit of RalGAP complexes. Functional studies demonstrate that κB-Ras proteins are not required for RalGAP catalytic activity in vitro, but for functionality in vivo. We propose that κB-Ras may thus act as regulator of RalGAP localization and thereby control the Ras/Ral signaling pathway.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.