Etienne Lefevre, Fanny Chasseloup, Nataly Ladurelle, Clément Janot, Jean Laurent Thibaud, Isabelle Beau, Clovis Adam, Céline des Courtils, Philippe Zizzari, Alexandre Carpentier, Peter Kamenický
{"title":"立体定向GC细胞注射致免疫活性大鼠原位垂体瘤。","authors":"Etienne Lefevre, Fanny Chasseloup, Nataly Ladurelle, Clément Janot, Jean Laurent Thibaud, Isabelle Beau, Clovis Adam, Céline des Courtils, Philippe Zizzari, Alexandre Carpentier, Peter Kamenický","doi":"10.1186/s40478-025-02052-6","DOIUrl":null,"url":null,"abstract":"<p><p>Innovative treatment strategies for pituitary tumors are necessary to limit the disease burden and to improve survival in cases of carcinomas. The paucity and inaccuracy of available preclinical models substantially hamper pituitary research and drug discovery. Hence, we describe a novel method to generate orthotopic pituitary tumors via stereotaxic injection of somatotroph GC cells into the pituitaries of immunocompetent Wistar Furth rats. Tumor growth was monitored by repeated 7 Tesla magnetic resonance imaging. The procedure consistently led to rapidly expanding intra- and suprasellar growth hormone-secreting tumors within their native anatomical environment. The generated tumors faithfully reproduced the microarchitecture of human somatotroph pituitary adenomas, including the immune infiltrates and other typical components of their microenvironment, which is a prerequisite for testing immunomodulating agents. This orthotopic model of proliferative pituitary tumors developed in immunocompetent hosts therefore unlocks new opportunities for preclinical studies.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"13 1","pages":"149"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229040/pdf/","citationCount":"0","resultStr":"{\"title\":\"Orthotopic pituitary tumors generated by stereotaxic GC cell injection in immunocompetent rats.\",\"authors\":\"Etienne Lefevre, Fanny Chasseloup, Nataly Ladurelle, Clément Janot, Jean Laurent Thibaud, Isabelle Beau, Clovis Adam, Céline des Courtils, Philippe Zizzari, Alexandre Carpentier, Peter Kamenický\",\"doi\":\"10.1186/s40478-025-02052-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innovative treatment strategies for pituitary tumors are necessary to limit the disease burden and to improve survival in cases of carcinomas. The paucity and inaccuracy of available preclinical models substantially hamper pituitary research and drug discovery. Hence, we describe a novel method to generate orthotopic pituitary tumors via stereotaxic injection of somatotroph GC cells into the pituitaries of immunocompetent Wistar Furth rats. Tumor growth was monitored by repeated 7 Tesla magnetic resonance imaging. The procedure consistently led to rapidly expanding intra- and suprasellar growth hormone-secreting tumors within their native anatomical environment. The generated tumors faithfully reproduced the microarchitecture of human somatotroph pituitary adenomas, including the immune infiltrates and other typical components of their microenvironment, which is a prerequisite for testing immunomodulating agents. This orthotopic model of proliferative pituitary tumors developed in immunocompetent hosts therefore unlocks new opportunities for preclinical studies.</p>\",\"PeriodicalId\":6914,\"journal\":{\"name\":\"Acta Neuropathologica Communications\",\"volume\":\"13 1\",\"pages\":\"149\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12229040/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Neuropathologica Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40478-025-02052-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-025-02052-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Orthotopic pituitary tumors generated by stereotaxic GC cell injection in immunocompetent rats.
Innovative treatment strategies for pituitary tumors are necessary to limit the disease burden and to improve survival in cases of carcinomas. The paucity and inaccuracy of available preclinical models substantially hamper pituitary research and drug discovery. Hence, we describe a novel method to generate orthotopic pituitary tumors via stereotaxic injection of somatotroph GC cells into the pituitaries of immunocompetent Wistar Furth rats. Tumor growth was monitored by repeated 7 Tesla magnetic resonance imaging. The procedure consistently led to rapidly expanding intra- and suprasellar growth hormone-secreting tumors within their native anatomical environment. The generated tumors faithfully reproduced the microarchitecture of human somatotroph pituitary adenomas, including the immune infiltrates and other typical components of their microenvironment, which is a prerequisite for testing immunomodulating agents. This orthotopic model of proliferative pituitary tumors developed in immunocompetent hosts therefore unlocks new opportunities for preclinical studies.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.