DFT引导下羟基酪醇包封纳米笼的设计:氮化硼与碳富勒烯在靶向药物传递和治疗应用中的比较见解

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
A. Khosravi, Mohammad T. Baei, S. Zahra Sayyed‐Alangi, E. Tazikeh Lemeski
{"title":"DFT引导下羟基酪醇包封纳米笼的设计:氮化硼与碳富勒烯在靶向药物传递和治疗应用中的比较见解","authors":"A. Khosravi, Mohammad T. Baei, S. Zahra Sayyed‐Alangi, E. Tazikeh Lemeski","doi":"10.1002/adts.202500582","DOIUrl":null,"url":null,"abstract":"Hydroxytyrosol (HT), a bioactive compound in olive oil, has therapeutic potential but is limited by low bioavailability and instability. This study explores fullerene‐like nanocages (B₁₂N₁₂, B₁₆N₁₆, C₂₄, C₃₂) as nanocarriers to enhance HT delivery. Using DFT, QTAIM, and molecular docking, interactions between HT and nanocages are analyzed. Boron nitride nanocages, particularly B₁₂N₁₂, show the strongest binding (Eads = −25.28 kcal mol<jats:sup>−1</jats:sup> in water) via Lewis acid‐base interactions, improving stability (ΔG = −11.90 kcal mol<jats:sup>−1</jats:sup>) and solubility. Carbon cages (C₂₄, C₃₂) exhibit weaker van der Waals interactions (Eads = −7.42 to −10.24 kcal mol<jats:sup>−1</jats:sup>), favoring controlled release. Electronic analyses reveal altered HT reactivity upon complexation. QTAIM confirms partially covalent B─O bonds in (BN)<jats:sub>n = 12, 16</jats:sub>‐HT systems, while carbon cages rely on dispersive forces. UV–vis spectra show redshifted peaks for BN‐HT complexes, indicating enhanced delocalization. Molecular docking demonstrates improved therapeutic effects of HT‐nanocage complexes. For instance, C₂₄‐HT strongly bound to COVID‐19 protease (E<jats:sub>Dc</jats:sub> = −3.86 kcal mol<jats:sup>−1</jats:sup>) and HER2 kinase (E<jats:sub>Dc</jats:sub> = −3.99 kcal mol<jats:sup>−1</jats:sup>), enhancing antiviral and anticancer activity. Similarly, B₁₆N₁₆‐HT effectively targets TNF‐α (E<jats:sub>Dc</jats:sub> = −3.70 kcal mol<jats:sup>−1</jats:sup>), showing superior anti‐inflammatory effects. These findings highlight nanocarriers' potential to overcome HT's limitations, enabling advanced biomedical applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"48 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT‐Guided Design of Hydroxytyrosol‐Encapsulated Nanocages: Comparative Insights into Boron Nitride Versus Carbon Fullerenes for Targeted Drug Delivery and Therapeutic Applications\",\"authors\":\"A. Khosravi, Mohammad T. Baei, S. Zahra Sayyed‐Alangi, E. Tazikeh Lemeski\",\"doi\":\"10.1002/adts.202500582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroxytyrosol (HT), a bioactive compound in olive oil, has therapeutic potential but is limited by low bioavailability and instability. This study explores fullerene‐like nanocages (B₁₂N₁₂, B₁₆N₁₆, C₂₄, C₃₂) as nanocarriers to enhance HT delivery. Using DFT, QTAIM, and molecular docking, interactions between HT and nanocages are analyzed. Boron nitride nanocages, particularly B₁₂N₁₂, show the strongest binding (Eads = −25.28 kcal mol<jats:sup>−1</jats:sup> in water) via Lewis acid‐base interactions, improving stability (ΔG = −11.90 kcal mol<jats:sup>−1</jats:sup>) and solubility. Carbon cages (C₂₄, C₃₂) exhibit weaker van der Waals interactions (Eads = −7.42 to −10.24 kcal mol<jats:sup>−1</jats:sup>), favoring controlled release. Electronic analyses reveal altered HT reactivity upon complexation. QTAIM confirms partially covalent B─O bonds in (BN)<jats:sub>n = 12, 16</jats:sub>‐HT systems, while carbon cages rely on dispersive forces. UV–vis spectra show redshifted peaks for BN‐HT complexes, indicating enhanced delocalization. Molecular docking demonstrates improved therapeutic effects of HT‐nanocage complexes. For instance, C₂₄‐HT strongly bound to COVID‐19 protease (E<jats:sub>Dc</jats:sub> = −3.86 kcal mol<jats:sup>−1</jats:sup>) and HER2 kinase (E<jats:sub>Dc</jats:sub> = −3.99 kcal mol<jats:sup>−1</jats:sup>), enhancing antiviral and anticancer activity. Similarly, B₁₆N₁₆‐HT effectively targets TNF‐α (E<jats:sub>Dc</jats:sub> = −3.70 kcal mol<jats:sup>−1</jats:sup>), showing superior anti‐inflammatory effects. These findings highlight nanocarriers' potential to overcome HT's limitations, enabling advanced biomedical applications.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202500582\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500582","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

羟基酪醇(HT)是橄榄油中的一种生物活性化合物,具有治疗潜力,但受低生物利用度和不稳定性的限制。本研究探索了类似富勒烯的纳米笼(B₁₂N₁₂,B₁₆N₁₆,C₂₄,C₃₂)作为纳米载体来增强高温输送。利用DFT、QTAIM和分子对接,分析了HT与纳米笼之间的相互作用。氮化硼纳米笼,特别是B₁₂N₁₂,通过路易斯酸碱相互作用表现出最强的结合(Eads = - 25.28 kcal mol - 1),提高了稳定性(ΔG = - 11.90 kcal mol - 1)和溶解度。碳笼(C₂₄,C₃₂)表现出较弱的范德瓦尔斯相互作用(Eads =−7.42至−10.24 kcal mol−1),有利于控制释放。电子分析显示络合后HT反应性改变。QTAIM证实了(BN)n = 12,16 - HT体系中部分共价的B─O键,而碳笼依赖于色散力。紫外可见光谱显示BN - HT配合物的红移峰,表明离域增强。分子对接证明了HT -纳米笼复合物改善的治疗效果。例如,C₂₄‐HT与COVID‐19蛋白酶(EDc =−3.86 kcal mol−1)和HER2激酶(EDc =−3.99 kcal mol−1)紧密结合,增强了抗病毒和抗癌活性。同样,B₁₆- N₁₆- HT有效靶向TNF - α (EDc = - 3.70 kcal mol - 1),具有良好的抗炎作用。这些发现突出了纳米载体克服高温疗法局限性的潜力,使先进的生物医学应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFT‐Guided Design of Hydroxytyrosol‐Encapsulated Nanocages: Comparative Insights into Boron Nitride Versus Carbon Fullerenes for Targeted Drug Delivery and Therapeutic Applications
Hydroxytyrosol (HT), a bioactive compound in olive oil, has therapeutic potential but is limited by low bioavailability and instability. This study explores fullerene‐like nanocages (B₁₂N₁₂, B₁₆N₁₆, C₂₄, C₃₂) as nanocarriers to enhance HT delivery. Using DFT, QTAIM, and molecular docking, interactions between HT and nanocages are analyzed. Boron nitride nanocages, particularly B₁₂N₁₂, show the strongest binding (Eads = −25.28 kcal mol−1 in water) via Lewis acid‐base interactions, improving stability (ΔG = −11.90 kcal mol−1) and solubility. Carbon cages (C₂₄, C₃₂) exhibit weaker van der Waals interactions (Eads = −7.42 to −10.24 kcal mol−1), favoring controlled release. Electronic analyses reveal altered HT reactivity upon complexation. QTAIM confirms partially covalent B─O bonds in (BN)n = 12, 16‐HT systems, while carbon cages rely on dispersive forces. UV–vis spectra show redshifted peaks for BN‐HT complexes, indicating enhanced delocalization. Molecular docking demonstrates improved therapeutic effects of HT‐nanocage complexes. For instance, C₂₄‐HT strongly bound to COVID‐19 protease (EDc = −3.86 kcal mol−1) and HER2 kinase (EDc = −3.99 kcal mol−1), enhancing antiviral and anticancer activity. Similarly, B₁₆N₁₆‐HT effectively targets TNF‐α (EDc = −3.70 kcal mol−1), showing superior anti‐inflammatory effects. These findings highlight nanocarriers' potential to overcome HT's limitations, enabling advanced biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信