Toshiki Takadera, Takashi Hiramatsu and Tsutomu Kobayashi
{"title":"DHOST理论中的球塌缩和暗能量的EFT","authors":"Toshiki Takadera, Takashi Hiramatsu and Tsutomu Kobayashi","doi":"10.1088/1475-7516/2025/07/006","DOIUrl":null,"url":null,"abstract":"We study the nonlinear evolution of matter overdensities using the spherical collapse model in degenerate higher-order scalar-tensor (DHOST) theories beyond Horndeski, employing the effective field theory (EFT) of dark energy approach. We investigate the impact of the EFT parameters characterising DHOST theories on the formation of large-scale structure. We identify the parameter space in which the collapse of the spherical overdensity is prevented by the scalar field turning imaginary at some moment, which allows us to place constraints on the model parameters. We show how the collapse time and the critical density contrast depend on the EFT parameters. To assess the observational implications, we compute the halo mass function using the Press-Schechter formalism. We find that the number density of halos is suppressed compared to the ΛCDM model due to “beyond Horndeski” effects, upon imposing the stability of linear perturbations.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"20 1","pages":"006"},"PeriodicalIF":5.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical collapse in DHOST theories and EFT of dark energy\",\"authors\":\"Toshiki Takadera, Takashi Hiramatsu and Tsutomu Kobayashi\",\"doi\":\"10.1088/1475-7516/2025/07/006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the nonlinear evolution of matter overdensities using the spherical collapse model in degenerate higher-order scalar-tensor (DHOST) theories beyond Horndeski, employing the effective field theory (EFT) of dark energy approach. We investigate the impact of the EFT parameters characterising DHOST theories on the formation of large-scale structure. We identify the parameter space in which the collapse of the spherical overdensity is prevented by the scalar field turning imaginary at some moment, which allows us to place constraints on the model parameters. We show how the collapse time and the critical density contrast depend on the EFT parameters. To assess the observational implications, we compute the halo mass function using the Press-Schechter formalism. We find that the number density of halos is suppressed compared to the ΛCDM model due to “beyond Horndeski” effects, upon imposing the stability of linear perturbations.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"20 1\",\"pages\":\"006\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/07/006\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/07/006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Spherical collapse in DHOST theories and EFT of dark energy
We study the nonlinear evolution of matter overdensities using the spherical collapse model in degenerate higher-order scalar-tensor (DHOST) theories beyond Horndeski, employing the effective field theory (EFT) of dark energy approach. We investigate the impact of the EFT parameters characterising DHOST theories on the formation of large-scale structure. We identify the parameter space in which the collapse of the spherical overdensity is prevented by the scalar field turning imaginary at some moment, which allows us to place constraints on the model parameters. We show how the collapse time and the critical density contrast depend on the EFT parameters. To assess the observational implications, we compute the halo mass function using the Press-Schechter formalism. We find that the number density of halos is suppressed compared to the ΛCDM model due to “beyond Horndeski” effects, upon imposing the stability of linear perturbations.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.