非常源项惩罚弹塑性扭转问题的有限元逼近

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Franz Chouly, Tom Gustafsson, Patrick Hild
{"title":"非常源项惩罚弹塑性扭转问题的有限元逼近","authors":"Franz Chouly, Tom Gustafsson, Patrick Hild","doi":"10.1093/imanum/draf052","DOIUrl":null,"url":null,"abstract":"This study is concerned with the finite element approximation of the elastoplastic torsion problem. We focus on the case of a nonconstant source term, which cannot be easily recast into an obstacle problem as can be done in the case of a constant source term. We present a simple formulation that penalizes the constraint directly on the gradient norm of the solution. We study its well-posedness, derive error estimates and present numerical results to illustrate the theory.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element approximation of penalized elastoplastic torsion problem with nonconstant source term\",\"authors\":\"Franz Chouly, Tom Gustafsson, Patrick Hild\",\"doi\":\"10.1093/imanum/draf052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is concerned with the finite element approximation of the elastoplastic torsion problem. We focus on the case of a nonconstant source term, which cannot be easily recast into an obstacle problem as can be done in the case of a constant source term. We present a simple formulation that penalizes the constraint directly on the gradient norm of the solution. We study its well-posedness, derive error estimates and present numerical results to illustrate the theory.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf052\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf052","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了弹塑性扭转问题的有限元逼近问题。我们将重点放在非恒定源项的情况下,它不能像在恒定源项的情况下那样容易地转化为障碍问题。我们提出了一个简单的公式,直接对解的梯度范数的约束进行惩罚。我们研究了它的适定性,推导了误差估计,并给出了数值结果来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element approximation of penalized elastoplastic torsion problem with nonconstant source term
This study is concerned with the finite element approximation of the elastoplastic torsion problem. We focus on the case of a nonconstant source term, which cannot be easily recast into an obstacle problem as can be done in the case of a constant source term. We present a simple formulation that penalizes the constraint directly on the gradient norm of the solution. We study its well-posedness, derive error estimates and present numerical results to illustrate the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信