基于受限分布变换的半监督异常检测。

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Feng Xiao, Youqing Wang, S Joe Qin, Jicong Fan
{"title":"基于受限分布变换的半监督异常检测。","authors":"Feng Xiao, Youqing Wang, S Joe Qin, Jicong Fan","doi":"10.1109/TNNLS.2025.3583320","DOIUrl":null,"url":null,"abstract":"<p><p>Anomaly detection (AD) is typically regarded as an unsupervised learning task, where the training data either do not contain any anomalous samples or contain only a few unlabeled anomalous samples. In fact, in many real scenarios such as fault diagnosis and disease detection, a small number of anomalous samples labeled by domain experts are often available during the training phase, which makes semi-supervised AD (SAD) more appealing, though the related study is quite limited. Existing semi-supervised AD methods directly add optimization terms of anomalous samples to the optimization objective of unsupervised AD (UAD), where the effects of the limited labeled anomalous data on the optimization process become trivial and they cannot fully contribute to the detection task. To cover the shortage, in this work, we propose a novel semi-supervised AD method to fully use the limited labeled anomalous data and further to boost detection performance. The proposed method learns a nonlinear transformation to project normal data into a compact target distribution and simultaneously to project exposed anomalous samples into another target distribution, where the two target distributions do not overlap each other. The goal is difficult to achieve because of the scarcity of anomalous samples. To address this problem, we propose to generate a large number of intermediate samples interpolating between normal and anomalous data and project them into a third target distribution lying between the aforementioned two target distributions. Empirical results on multiple benchmarks with varying domains demonstrate the superiority of our method over existing supervised and semi-supervised AD methods.</p>","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"PP ","pages":"17966-17977"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Anomaly Detection Using Restricted Distribution Transformation.\",\"authors\":\"Feng Xiao, Youqing Wang, S Joe Qin, Jicong Fan\",\"doi\":\"10.1109/TNNLS.2025.3583320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anomaly detection (AD) is typically regarded as an unsupervised learning task, where the training data either do not contain any anomalous samples or contain only a few unlabeled anomalous samples. In fact, in many real scenarios such as fault diagnosis and disease detection, a small number of anomalous samples labeled by domain experts are often available during the training phase, which makes semi-supervised AD (SAD) more appealing, though the related study is quite limited. Existing semi-supervised AD methods directly add optimization terms of anomalous samples to the optimization objective of unsupervised AD (UAD), where the effects of the limited labeled anomalous data on the optimization process become trivial and they cannot fully contribute to the detection task. To cover the shortage, in this work, we propose a novel semi-supervised AD method to fully use the limited labeled anomalous data and further to boost detection performance. The proposed method learns a nonlinear transformation to project normal data into a compact target distribution and simultaneously to project exposed anomalous samples into another target distribution, where the two target distributions do not overlap each other. The goal is difficult to achieve because of the scarcity of anomalous samples. To address this problem, we propose to generate a large number of intermediate samples interpolating between normal and anomalous data and project them into a third target distribution lying between the aforementioned two target distributions. Empirical results on multiple benchmarks with varying domains demonstrate the superiority of our method over existing supervised and semi-supervised AD methods.</p>\",\"PeriodicalId\":13303,\"journal\":{\"name\":\"IEEE transactions on neural networks and learning systems\",\"volume\":\"PP \",\"pages\":\"17966-17977\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on neural networks and learning systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TNNLS.2025.3583320\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TNNLS.2025.3583320","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

异常检测通常被认为是一种无监督学习任务,训练数据要么不包含任何异常样本,要么只包含少量未标记的异常样本。事实上,在故障诊断和疾病检测等许多实际场景中,在训练阶段往往可以获得由领域专家标记的少量异常样本,这使得半监督AD (SAD)更具吸引力,尽管相关研究相当有限。现有的半监督AD方法直接将异常样本的优化项添加到无监督AD (UAD)的优化目标中,其中有限的标记异常数据对优化过程的影响变得微不足道,不能完全为检测任务做出贡献。为了弥补这一不足,本文提出了一种新的半监督AD方法,以充分利用有限的标记异常数据,进一步提高检测性能。该方法学习一种非线性变换,将正常数据投影到一个紧凑的目标分布中,同时将暴露的异常样本投影到另一个目标分布中,其中两个目标分布互不重叠。由于异常样本的稀缺性,这一目标很难实现。为了解决这个问题,我们建议在正态和异常数据之间生成大量的中间样本,并将它们投影到位于上述两个目标分布之间的第三个目标分布中。在不同领域的多个基准测试上的经验结果表明,我们的方法优于现有的监督和半监督AD方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Supervised Anomaly Detection Using Restricted Distribution Transformation.

Anomaly detection (AD) is typically regarded as an unsupervised learning task, where the training data either do not contain any anomalous samples or contain only a few unlabeled anomalous samples. In fact, in many real scenarios such as fault diagnosis and disease detection, a small number of anomalous samples labeled by domain experts are often available during the training phase, which makes semi-supervised AD (SAD) more appealing, though the related study is quite limited. Existing semi-supervised AD methods directly add optimization terms of anomalous samples to the optimization objective of unsupervised AD (UAD), where the effects of the limited labeled anomalous data on the optimization process become trivial and they cannot fully contribute to the detection task. To cover the shortage, in this work, we propose a novel semi-supervised AD method to fully use the limited labeled anomalous data and further to boost detection performance. The proposed method learns a nonlinear transformation to project normal data into a compact target distribution and simultaneously to project exposed anomalous samples into another target distribution, where the two target distributions do not overlap each other. The goal is difficult to achieve because of the scarcity of anomalous samples. To address this problem, we propose to generate a large number of intermediate samples interpolating between normal and anomalous data and project them into a third target distribution lying between the aforementioned two target distributions. Empirical results on multiple benchmarks with varying domains demonstrate the superiority of our method over existing supervised and semi-supervised AD methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信