Wan-Jun Jiang, Xin-Tao Mao, Wen-Ping Li, Nicole Jin, Yu Wang, Guiping Guan, Jin Jin, Yi-Yuan Li
{"title":"nat10介导的B细胞NIK mRNA乙酰化促进了IgA的产生。","authors":"Wan-Jun Jiang, Xin-Tao Mao, Wen-Ping Li, Nicole Jin, Yu Wang, Guiping Guan, Jin Jin, Yi-Yuan Li","doi":"10.1038/s44319-025-00509-2","DOIUrl":null,"url":null,"abstract":"<p><p>The regulation of IgA expression is crucial for maintaining mucosal immune homeostasis, providing a vital defense mechanism against pathogens at mucosal surfaces. However, the intricate mechanisms governing IgA class-switch recombination and its dysregulation in diseases such as inflammatory bowel disease remain a significant challenge in the field. Our study delves into the significance of IgA regulation in mucosal immunity, focusing on the N<sup>4</sup>-acetylcytidine (ac<sup>4</sup>C) in NIK mRNA by NAT10 in B cells. We discovered that NAT10-mediated ac<sup>4</sup>C stabilizes NIK mRNA, thereby promoting IgA production, which is pivotal for immune defense. Our findings in a B-cell conditional NAT10 knockout mouse model highlight a reduction in IgA expression and a dampened noncanonical NF-κB pathway, suggesting NAT10 as a potential therapeutic target for IgA-related disorders. This research provides novel insights into the post-transcriptional regulation of IgA and underscores the role of NAT10 in modulating mucosal immunity.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NAT10-mediated acetylation of NIK mRNA in B cells promotes IgA production.\",\"authors\":\"Wan-Jun Jiang, Xin-Tao Mao, Wen-Ping Li, Nicole Jin, Yu Wang, Guiping Guan, Jin Jin, Yi-Yuan Li\",\"doi\":\"10.1038/s44319-025-00509-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The regulation of IgA expression is crucial for maintaining mucosal immune homeostasis, providing a vital defense mechanism against pathogens at mucosal surfaces. However, the intricate mechanisms governing IgA class-switch recombination and its dysregulation in diseases such as inflammatory bowel disease remain a significant challenge in the field. Our study delves into the significance of IgA regulation in mucosal immunity, focusing on the N<sup>4</sup>-acetylcytidine (ac<sup>4</sup>C) in NIK mRNA by NAT10 in B cells. We discovered that NAT10-mediated ac<sup>4</sup>C stabilizes NIK mRNA, thereby promoting IgA production, which is pivotal for immune defense. Our findings in a B-cell conditional NAT10 knockout mouse model highlight a reduction in IgA expression and a dampened noncanonical NF-κB pathway, suggesting NAT10 as a potential therapeutic target for IgA-related disorders. This research provides novel insights into the post-transcriptional regulation of IgA and underscores the role of NAT10 in modulating mucosal immunity.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00509-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00509-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
NAT10-mediated acetylation of NIK mRNA in B cells promotes IgA production.
The regulation of IgA expression is crucial for maintaining mucosal immune homeostasis, providing a vital defense mechanism against pathogens at mucosal surfaces. However, the intricate mechanisms governing IgA class-switch recombination and its dysregulation in diseases such as inflammatory bowel disease remain a significant challenge in the field. Our study delves into the significance of IgA regulation in mucosal immunity, focusing on the N4-acetylcytidine (ac4C) in NIK mRNA by NAT10 in B cells. We discovered that NAT10-mediated ac4C stabilizes NIK mRNA, thereby promoting IgA production, which is pivotal for immune defense. Our findings in a B-cell conditional NAT10 knockout mouse model highlight a reduction in IgA expression and a dampened noncanonical NF-κB pathway, suggesting NAT10 as a potential therapeutic target for IgA-related disorders. This research provides novel insights into the post-transcriptional regulation of IgA and underscores the role of NAT10 in modulating mucosal immunity.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.