ViT-GCN:一种基于x线影像的肺炎准确诊断的新型混合模型。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Nuo Xu, Jinran Wu, Fengjing Cai, Xi'an Li, Hong-Bo Xie
{"title":"ViT-GCN:一种基于x线影像的肺炎准确诊断的新型混合模型。","authors":"Nuo Xu, Jinran Wu, Fengjing Cai, Xi'an Li, Hong-Bo Xie","doi":"10.1088/2057-1976/adebf4","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance the accuracy of pneumonia diagnosis from x-ray images by developing a model that integrates Vision Transformer (ViT) and Graph Convolutional Networks (GCN) for improved feature extraction and diagnostic performance. The ViT-GCN model was designed to leverage the strengths of both ViT, which captures global image information by dividing the image into fixed-size patches and processing them in sequence, and GCN, which captures node features and relationships through message passing and aggregation in graph data. A composite loss function combining multivariate cross-entropy, focal loss, and GHM loss was introduced to address dataset imbalance and improve training efficiency on small datasets. The ViT-GCN model demonstrated superior performance, achieving an accuracy of 91.43% on the COVID-19 chest x-ray database, surpassing existing models in diagnostic accuracy for pneumonia. The study highlights the effectiveness of combining ViT and GCN architectures in medical image diagnosis, particularly in addressing challenges related to small datasets. This approach can lead to more accurate and efficient pneumonia diagnoses, especially in resource-constrained settings where small datasets are common.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViT-GCN: a novel hybrid model for accurate pneumonia diagnosis from x-ray images.\",\"authors\":\"Nuo Xu, Jinran Wu, Fengjing Cai, Xi'an Li, Hong-Bo Xie\",\"doi\":\"10.1088/2057-1976/adebf4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to enhance the accuracy of pneumonia diagnosis from x-ray images by developing a model that integrates Vision Transformer (ViT) and Graph Convolutional Networks (GCN) for improved feature extraction and diagnostic performance. The ViT-GCN model was designed to leverage the strengths of both ViT, which captures global image information by dividing the image into fixed-size patches and processing them in sequence, and GCN, which captures node features and relationships through message passing and aggregation in graph data. A composite loss function combining multivariate cross-entropy, focal loss, and GHM loss was introduced to address dataset imbalance and improve training efficiency on small datasets. The ViT-GCN model demonstrated superior performance, achieving an accuracy of 91.43% on the COVID-19 chest x-ray database, surpassing existing models in diagnostic accuracy for pneumonia. The study highlights the effectiveness of combining ViT and GCN architectures in medical image diagnosis, particularly in addressing challenges related to small datasets. This approach can lead to more accurate and efficient pneumonia diagnoses, especially in resource-constrained settings where small datasets are common.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/adebf4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adebf4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过开发一种集成视觉变换(ViT)和图卷积网络(GCN)的模型来提高x射线图像肺炎诊断的准确性,以提高特征提取和诊断性能。viti -GCN模型利用了ViT和GCN的优势,前者通过将图像划分为固定大小的小块并按顺序处理来捕获全局图像信息,后者通过图数据中的消息传递和聚合来捕获节点特征和关系。引入多元交叉熵、焦点损失和GHM损失相结合的复合损失函数,解决了数据集不平衡问题,提高了小数据集的训练效率。viti - gcn模型表现出了优异的性能,在COVID-19胸部x线数据库上实现了91.43%的准确率,超过了现有模型对肺炎的诊断准确性。该研究强调了结合ViT和GCN架构在医学图像诊断中的有效性,特别是在解决与小数据集相关的挑战方面。这种方法可以导致更准确和有效的肺炎诊断,特别是在资源有限的情况下,小数据集很常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViT-GCN: a novel hybrid model for accurate pneumonia diagnosis from x-ray images.

This study aims to enhance the accuracy of pneumonia diagnosis from x-ray images by developing a model that integrates Vision Transformer (ViT) and Graph Convolutional Networks (GCN) for improved feature extraction and diagnostic performance. The ViT-GCN model was designed to leverage the strengths of both ViT, which captures global image information by dividing the image into fixed-size patches and processing them in sequence, and GCN, which captures node features and relationships through message passing and aggregation in graph data. A composite loss function combining multivariate cross-entropy, focal loss, and GHM loss was introduced to address dataset imbalance and improve training efficiency on small datasets. The ViT-GCN model demonstrated superior performance, achieving an accuracy of 91.43% on the COVID-19 chest x-ray database, surpassing existing models in diagnostic accuracy for pneumonia. The study highlights the effectiveness of combining ViT and GCN architectures in medical image diagnosis, particularly in addressing challenges related to small datasets. This approach can lead to more accurate and efficient pneumonia diagnoses, especially in resource-constrained settings where small datasets are common.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信