用于析氧电催化的岩盐(FeCoMnMgZn)O高熵氧化物纳米晶体的结构、组成和形态相互关系。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gaurav R. Dey, Simeon Teklu, Zixiao Shi, Meixue Hu, Katherine L. Thompson, Samuel S. Soliman, Robert W. Lord, Héctor D. Abruña, David A. Muller and Raymond E. Schaak*, 
{"title":"用于析氧电催化的岩盐(FeCoMnMgZn)O高熵氧化物纳米晶体的结构、组成和形态相互关系。","authors":"Gaurav R. Dey,&nbsp;Simeon Teklu,&nbsp;Zixiao Shi,&nbsp;Meixue Hu,&nbsp;Katherine L. Thompson,&nbsp;Samuel S. Soliman,&nbsp;Robert W. Lord,&nbsp;Héctor D. Abruña,&nbsp;David A. Muller and Raymond E. Schaak*,&nbsp;","doi":"10.1021/jacs.5c06732","DOIUrl":null,"url":null,"abstract":"<p >The colloidal synthesis of high entropy oxide (HEO) nanocrystals requires navigating and balancing competing reaction pathways, which are often unknown. There is also a limited understanding of HEO nanocrystal formation and growth pathways, which hinders morphological control. Here, we report on the colloidal synthesis of rocksalt-type (FeCoMnMgZn)O nanocrystals with different morphologies. Reaction pathway studies show a Fe-rich spinel-type intermediate and indicate that competing chemical reactivities dictate the final compositions and morphologies. Atomic resolution imaging analysis of concave cubic and dendritic (FeCoMnMgZn)O nanocrystals indicate a 1.73% lattice expansion relative to bulk FeO. The (FeCoMnMgZn)O nanocrystals are active electrocatalysts for the oxygen evolution reaction in alkaline media.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 28","pages":"24230–24234"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, Compositional, and Morphological Interrelationships in Rocksalt (FeCoMnMgZn)O High Entropy Oxide Nanocrystals for Oxygen Evolution Electrocatalysis\",\"authors\":\"Gaurav R. Dey,&nbsp;Simeon Teklu,&nbsp;Zixiao Shi,&nbsp;Meixue Hu,&nbsp;Katherine L. Thompson,&nbsp;Samuel S. Soliman,&nbsp;Robert W. Lord,&nbsp;Héctor D. Abruña,&nbsp;David A. Muller and Raymond E. Schaak*,&nbsp;\",\"doi\":\"10.1021/jacs.5c06732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The colloidal synthesis of high entropy oxide (HEO) nanocrystals requires navigating and balancing competing reaction pathways, which are often unknown. There is also a limited understanding of HEO nanocrystal formation and growth pathways, which hinders morphological control. Here, we report on the colloidal synthesis of rocksalt-type (FeCoMnMgZn)O nanocrystals with different morphologies. Reaction pathway studies show a Fe-rich spinel-type intermediate and indicate that competing chemical reactivities dictate the final compositions and morphologies. Atomic resolution imaging analysis of concave cubic and dendritic (FeCoMnMgZn)O nanocrystals indicate a 1.73% lattice expansion relative to bulk FeO. The (FeCoMnMgZn)O nanocrystals are active electrocatalysts for the oxygen evolution reaction in alkaline media.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 28\",\"pages\":\"24230–24234\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c06732\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c06732","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高熵氧化物(HEO)纳米晶体的胶体合成需要导航和平衡竞争的反应途径,这些途径通常是未知的。对HEO纳米晶的形成和生长途径的了解也很有限,这阻碍了形态学控制。本文报道了不同形貌的岩盐型(FeCoMnMgZn)O纳米晶体的胶体合成。反应途径研究表明富铁尖晶石型中间体,并表明竞争的化学反应决定了最终的组成和形态。凹立方和枝晶(FeCoMnMgZn)O纳米晶的原子分辨率成像分析表明,相对于块状FeO,其晶格膨胀率为1.73%。(FeCoMnMgZn)O纳米晶体是碱性介质中析氧反应的活性电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural, Compositional, and Morphological Interrelationships in Rocksalt (FeCoMnMgZn)O High Entropy Oxide Nanocrystals for Oxygen Evolution Electrocatalysis

Structural, Compositional, and Morphological Interrelationships in Rocksalt (FeCoMnMgZn)O High Entropy Oxide Nanocrystals for Oxygen Evolution Electrocatalysis

The colloidal synthesis of high entropy oxide (HEO) nanocrystals requires navigating and balancing competing reaction pathways, which are often unknown. There is also a limited understanding of HEO nanocrystal formation and growth pathways, which hinders morphological control. Here, we report on the colloidal synthesis of rocksalt-type (FeCoMnMgZn)O nanocrystals with different morphologies. Reaction pathway studies show a Fe-rich spinel-type intermediate and indicate that competing chemical reactivities dictate the final compositions and morphologies. Atomic resolution imaging analysis of concave cubic and dendritic (FeCoMnMgZn)O nanocrystals indicate a 1.73% lattice expansion relative to bulk FeO. The (FeCoMnMgZn)O nanocrystals are active electrocatalysts for the oxygen evolution reaction in alkaline media.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信