用纯升华驱动的大气模拟木卫一大气的纬向、纵向和时间变化

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
A.-C. Dott, J. Saur, S. Schlegel, D. F. Strobel, K. de Kleer, I. de Pater
{"title":"用纯升华驱动的大气模拟木卫一大气的纬向、纵向和时间变化","authors":"A.-C. Dott,&nbsp;J. Saur,&nbsp;S. Schlegel,&nbsp;D. F. Strobel,&nbsp;K. de Kleer,&nbsp;I. de Pater","doi":"10.1029/2024JE008869","DOIUrl":null,"url":null,"abstract":"<p>How much of Io's <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{SO}}_{2}$</annotation>\n </semantics></math> atmosphere is driven by volcanic outgassing or sublimation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{SO}}_{2}$</annotation>\n </semantics></math> surface frost is a question with a considerable history. We develop a time dependent surface temperature model including thermal inertia and the exact celestial geometry to model the radiation driven global structure and temporal evolution of Io's atmosphere. We show that many observations can be explained by assuming a purely sublimation driven atmosphere. We find that a thermal diffusivity <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <mn>2.41</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>7</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $\\alpha =2.41\\times 1{0}^{-7}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{2}{\\mathrm{s}}^{-1}$</annotation>\n </semantics></math> yields an averaged atmospheric <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>SO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{SO}}_{2}$</annotation>\n </semantics></math> column density decreasing by more than one order of magnitude from the equator to the poles in accordance with the observed spatial variations of Io's column densities. Our model produces a strong day-night-asymmetry with modeled column density variations of almost two orders of magnitude at the equator as well as a sub-anti-Jovian hemisphere asymmetry, with maximum dayside column densities of <span></span><math>\n <semantics>\n <mrow>\n <mn>3.7</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mn>16</mn>\n </msup>\n </mrow>\n <annotation> $3.7\\times 1{0}^{16}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>cm</mtext>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{cm}}^{-2}$</annotation>\n </semantics></math> for the sub-Jovian and <span></span><math>\n <semantics>\n <mrow>\n <mn>8.5</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mn>16</mn>\n </msup>\n </mrow>\n <annotation> $8.5\\times 1{0}^{16}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>cm</mtext>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{cm}}^{-2}$</annotation>\n </semantics></math> for the anti-Jovian hemisphere. Both are consistent with the observed temporal and large-scale longitudinal variation of Io's atmosphere. We find that the diurnal variations of the surface temperature affect the subsurface structure up to a depth of 0.6 m. Furthermore, we quantify seasonal effects with Io having a northern summer close to perihelion and a northern winter close to aphelion. Finally, we found that at Io's anomalous warm polar regions a conductive heat flux of at least 1.2 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>Wm</mtext>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{Wm}}^{-2}$</annotation>\n </semantics></math> is necessary to reach surface temperatures consistent with observations.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008869","citationCount":"0","resultStr":"{\"title\":\"Observed Latitudinal, Longitudinal and Temporal Variability of Io's Atmosphere Simulated by a Purely Sublimation Driven Atmosphere\",\"authors\":\"A.-C. Dott,&nbsp;J. Saur,&nbsp;S. Schlegel,&nbsp;D. F. Strobel,&nbsp;K. de Kleer,&nbsp;I. de Pater\",\"doi\":\"10.1029/2024JE008869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>How much of Io's <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>SO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{SO}}_{2}$</annotation>\\n </semantics></math> atmosphere is driven by volcanic outgassing or sublimation of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>SO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{SO}}_{2}$</annotation>\\n </semantics></math> surface frost is a question with a considerable history. We develop a time dependent surface temperature model including thermal inertia and the exact celestial geometry to model the radiation driven global structure and temporal evolution of Io's atmosphere. We show that many observations can be explained by assuming a purely sublimation driven atmosphere. We find that a thermal diffusivity <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>=</mo>\\n <mn>2.41</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n <msup>\\n <mn>0</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>7</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> $\\\\alpha =2.41\\\\times 1{0}^{-7}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mn>2</mn>\\n </msup>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{2}{\\\\mathrm{s}}^{-1}$</annotation>\\n </semantics></math> yields an averaged atmospheric <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>SO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{SO}}_{2}$</annotation>\\n </semantics></math> column density decreasing by more than one order of magnitude from the equator to the poles in accordance with the observed spatial variations of Io's column densities. Our model produces a strong day-night-asymmetry with modeled column density variations of almost two orders of magnitude at the equator as well as a sub-anti-Jovian hemisphere asymmetry, with maximum dayside column densities of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>3.7</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n <msup>\\n <mn>0</mn>\\n <mn>16</mn>\\n </msup>\\n </mrow>\\n <annotation> $3.7\\\\times 1{0}^{16}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>cm</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{cm}}^{-2}$</annotation>\\n </semantics></math> for the sub-Jovian and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>8.5</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n <msup>\\n <mn>0</mn>\\n <mn>16</mn>\\n </msup>\\n </mrow>\\n <annotation> $8.5\\\\times 1{0}^{16}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>cm</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{cm}}^{-2}$</annotation>\\n </semantics></math> for the anti-Jovian hemisphere. Both are consistent with the observed temporal and large-scale longitudinal variation of Io's atmosphere. We find that the diurnal variations of the surface temperature affect the subsurface structure up to a depth of 0.6 m. Furthermore, we quantify seasonal effects with Io having a northern summer close to perihelion and a northern winter close to aphelion. Finally, we found that at Io's anomalous warm polar regions a conductive heat flux of at least 1.2 <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>Wm</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{Wm}}^{-2}$</annotation>\\n </semantics></math> is necessary to reach surface temperatures consistent with observations.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 7\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008869\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008869\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008869","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

木卫一大气中有多少二氧化硫是由火山喷发或二氧化硫升华引起的,这是个问题有着悠久的历史。我们建立了一个时间依赖的表面温度模型,包括热惯性和精确的天体几何来模拟辐射驱动的木卫一大气的整体结构和时间演化。我们表明,许多观测可以通过假设一个纯粹的升华驱动的大气来解释。我们发现热扩散系数α =2.41 × 10 -7 $\ α =2.41\乘以1{0}^{-7}$m 2 s−1 ${\mathrm{m}}^{2}{\mathrm{s}}^{-1}$产生平均大气so2${\text{SO}}_{2}$柱密度从赤道到两极下降了一个数量级以上,与观测到的木卫一柱密度的空间变化相一致。我们的模型产生了强烈的昼夜不对称性,赤道的柱密度变化几乎是两个数量级,以及亚反木星半球的不对称性,最大昼侧柱密度为3.7 × 16 $3.7\乘以1{0}^{16}$ cm−2${\text{cm}}^{-2}$表示次木星和8.5 × 16 $8.5\乘以1{0}^{16}$ cm−2 ${\text{cm}}^{-2}$为反木星半球。两者都与观测到的木卫一大气的时间和大尺度纵向变化相一致。研究发现,地表温度的日变化对地下结构的影响深度可达0.6 m。此外,我们量化了木卫一北部夏季接近近日点和北部冬季接近远日点的季节性影响。最后,我们发现在木卫一异常温暖的极区,至少需要1.2 Wm−2 ${\text{Wm}}^{-2}$的传导热通量才能达到与观测相符的表面温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observed Latitudinal, Longitudinal and Temporal Variability of Io's Atmosphere Simulated by a Purely Sublimation Driven Atmosphere

Observed Latitudinal, Longitudinal and Temporal Variability of Io's Atmosphere Simulated by a Purely Sublimation Driven Atmosphere

How much of Io's SO 2 ${\text{SO}}_{2}$ atmosphere is driven by volcanic outgassing or sublimation of SO 2 ${\text{SO}}_{2}$ surface frost is a question with a considerable history. We develop a time dependent surface temperature model including thermal inertia and the exact celestial geometry to model the radiation driven global structure and temporal evolution of Io's atmosphere. We show that many observations can be explained by assuming a purely sublimation driven atmosphere. We find that a thermal diffusivity α = 2.41 × 1 0 7 $\alpha =2.41\times 1{0}^{-7}$ m 2 s 1 ${\mathrm{m}}^{2}{\mathrm{s}}^{-1}$ yields an averaged atmospheric SO 2 ${\text{SO}}_{2}$ column density decreasing by more than one order of magnitude from the equator to the poles in accordance with the observed spatial variations of Io's column densities. Our model produces a strong day-night-asymmetry with modeled column density variations of almost two orders of magnitude at the equator as well as a sub-anti-Jovian hemisphere asymmetry, with maximum dayside column densities of 3.7 × 1 0 16 $3.7\times 1{0}^{16}$ cm 2 ${\text{cm}}^{-2}$ for the sub-Jovian and 8.5 × 1 0 16 $8.5\times 1{0}^{16}$ cm 2 ${\text{cm}}^{-2}$ for the anti-Jovian hemisphere. Both are consistent with the observed temporal and large-scale longitudinal variation of Io's atmosphere. We find that the diurnal variations of the surface temperature affect the subsurface structure up to a depth of 0.6 m. Furthermore, we quantify seasonal effects with Io having a northern summer close to perihelion and a northern winter close to aphelion. Finally, we found that at Io's anomalous warm polar regions a conductive heat flux of at least 1.2  Wm 2 ${\text{Wm}}^{-2}$ is necessary to reach surface temperatures consistent with observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信