H2 + N2O反应的理论分析

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS
Clayton R. Mulvihill
{"title":"H2 + N2O反应的理论分析","authors":"Clayton R. Mulvihill","doi":"10.1016/j.combustflame.2025.114330","DOIUrl":null,"url":null,"abstract":"<div><div>The reaction of H<sub>2</sub> and N<sub>2</sub>O to directly form H<sub>2</sub>O and N<sub>2</sub> has been a matter of some controversy, with reported rate constants spanning nearly five orders of magnitude at 1500 K. This study presents the first theoretical analysis of the title reaction. By coupling an ANL1-QZF potential energy surface with a master equation treatment, the pressure-independent thermal rate constant <span><math><msub><mi>k</mi><mn>1</mn></msub></math></span> was determined between 400 and 3000 K. The best-fit <span><math><msub><mi>k</mi><mn>1</mn></msub></math></span> is given in cm<sup>3</sup>·mol<sup>–1</sup>·s<sup>–1</sup> as <span><math><mrow><msub><mi>k</mi><mn>1</mn></msub><mo>=</mo><mn>5.23</mn><mspace></mspace><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>4</mn></msup><mspace></mspace><msup><mrow><mi>T</mi></mrow><mrow><mn>2.272</mn></mrow></msup><mrow><mspace></mspace><mtext>exp</mtext></mrow><mi>⁡</mi><mrow><mo>(</mo><mrow><mo>−</mo><mn>21745</mn><mo>/</mo><mi>T</mi></mrow><mo>)</mo></mrow></mrow></math></span>, with <span><math><mi>T</mi></math></span> in K. This rate constant is several orders of magnitude smaller than values utilized in recent kinetics mechanisms.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"279 ","pages":"Article 114330"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical analysis of the reaction H2 + N2O ⇆ H2O + N2\",\"authors\":\"Clayton R. Mulvihill\",\"doi\":\"10.1016/j.combustflame.2025.114330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The reaction of H<sub>2</sub> and N<sub>2</sub>O to directly form H<sub>2</sub>O and N<sub>2</sub> has been a matter of some controversy, with reported rate constants spanning nearly five orders of magnitude at 1500 K. This study presents the first theoretical analysis of the title reaction. By coupling an ANL1-QZF potential energy surface with a master equation treatment, the pressure-independent thermal rate constant <span><math><msub><mi>k</mi><mn>1</mn></msub></math></span> was determined between 400 and 3000 K. The best-fit <span><math><msub><mi>k</mi><mn>1</mn></msub></math></span> is given in cm<sup>3</sup>·mol<sup>–1</sup>·s<sup>–1</sup> as <span><math><mrow><msub><mi>k</mi><mn>1</mn></msub><mo>=</mo><mn>5.23</mn><mspace></mspace><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>4</mn></msup><mspace></mspace><msup><mrow><mi>T</mi></mrow><mrow><mn>2.272</mn></mrow></msup><mrow><mspace></mspace><mtext>exp</mtext></mrow><mi>⁡</mi><mrow><mo>(</mo><mrow><mo>−</mo><mn>21745</mn><mo>/</mo><mi>T</mi></mrow><mo>)</mo></mrow></mrow></math></span>, with <span><math><mi>T</mi></math></span> in K. This rate constant is several orders of magnitude smaller than values utilized in recent kinetics mechanisms.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"279 \",\"pages\":\"Article 114330\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218025003670\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025003670","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

H2和N2O直接生成H2O和N2的反应一直是一个有争议的问题,报道的速率常数在1500 K时跨越了近五个数量级。本研究首次对标题反应进行了理论分析。通过耦合ANL1-QZF势能面和主方程处理,在400 ~ 3000 K范围内确定了与压力无关的热速率常数k1。最合适的k1以cm3·mol-1·s-1表示,k1=5.23×104T2.272exp (- 21745/T), T以k表示。这个速率常数比最近动力学机制中使用的值小几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theoretical analysis of the reaction H2 + N2O ⇆ H2O + N2
The reaction of H2 and N2O to directly form H2O and N2 has been a matter of some controversy, with reported rate constants spanning nearly five orders of magnitude at 1500 K. This study presents the first theoretical analysis of the title reaction. By coupling an ANL1-QZF potential energy surface with a master equation treatment, the pressure-independent thermal rate constant k1 was determined between 400 and 3000 K. The best-fit k1 is given in cm3·mol–1·s–1 as k1=5.23×104T2.272exp(21745/T), with T in K. This rate constant is several orders of magnitude smaller than values utilized in recent kinetics mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信