{"title":"动态增长和收缩神经网络的数据分类","authors":"Szymon Świderski , Agnieszka Jastrzębska","doi":"10.1016/j.jocs.2025.102660","DOIUrl":null,"url":null,"abstract":"<div><div>The issue of data-driven neural network model construction is one of the core problems in the domain of Artificial Intelligence. A standard approach assumes a fixed architecture with trainable weights. A conceptually more advanced assumption is that we not only train the weights but also find out the optimal model architecture. We present a new method that realizes just that. This article is an extended version of our conference paper titled “Dynamic Growing and Shrinking of Neural Networks with Monte Carlo Tree Search (Świderski and Jastrzebska, 2024). In the paper, we show in detail how to create a neural network with a procedure that allows dynamic shrinking and growing of the model while it is being trained. The decision-making mechanism for the architectural design is governed by the Monte Carlo tree search procedure, which simulates network behavior and allows comparing several candidate architecture changes to choose the best one. The proposed method was validated using both visual and time series datasets, demonstrating its particular effectiveness in multivariate time series classification. This is attributed to the architecture’s ability to adapt dynamically, allowing independent modifications for each time series. To enhance the reproducibility of our method, we publish open-source code of the proposed method. It was prepared in Python. Experimental evaluations in visual pattern and multivariate time series classification tasks revealed highly promising performance, underscoring the method’s robustness and adaptability.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102660"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data classification with dynamically growing and shrinking neural networks\",\"authors\":\"Szymon Świderski , Agnieszka Jastrzębska\",\"doi\":\"10.1016/j.jocs.2025.102660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The issue of data-driven neural network model construction is one of the core problems in the domain of Artificial Intelligence. A standard approach assumes a fixed architecture with trainable weights. A conceptually more advanced assumption is that we not only train the weights but also find out the optimal model architecture. We present a new method that realizes just that. This article is an extended version of our conference paper titled “Dynamic Growing and Shrinking of Neural Networks with Monte Carlo Tree Search (Świderski and Jastrzebska, 2024). In the paper, we show in detail how to create a neural network with a procedure that allows dynamic shrinking and growing of the model while it is being trained. The decision-making mechanism for the architectural design is governed by the Monte Carlo tree search procedure, which simulates network behavior and allows comparing several candidate architecture changes to choose the best one. The proposed method was validated using both visual and time series datasets, demonstrating its particular effectiveness in multivariate time series classification. This is attributed to the architecture’s ability to adapt dynamically, allowing independent modifications for each time series. To enhance the reproducibility of our method, we publish open-source code of the proposed method. It was prepared in Python. Experimental evaluations in visual pattern and multivariate time series classification tasks revealed highly promising performance, underscoring the method’s robustness and adaptability.</div></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"91 \",\"pages\":\"Article 102660\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750325001371\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001371","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Data classification with dynamically growing and shrinking neural networks
The issue of data-driven neural network model construction is one of the core problems in the domain of Artificial Intelligence. A standard approach assumes a fixed architecture with trainable weights. A conceptually more advanced assumption is that we not only train the weights but also find out the optimal model architecture. We present a new method that realizes just that. This article is an extended version of our conference paper titled “Dynamic Growing and Shrinking of Neural Networks with Monte Carlo Tree Search (Świderski and Jastrzebska, 2024). In the paper, we show in detail how to create a neural network with a procedure that allows dynamic shrinking and growing of the model while it is being trained. The decision-making mechanism for the architectural design is governed by the Monte Carlo tree search procedure, which simulates network behavior and allows comparing several candidate architecture changes to choose the best one. The proposed method was validated using both visual and time series datasets, demonstrating its particular effectiveness in multivariate time series classification. This is attributed to the architecture’s ability to adapt dynamically, allowing independent modifications for each time series. To enhance the reproducibility of our method, we publish open-source code of the proposed method. It was prepared in Python. Experimental evaluations in visual pattern and multivariate time series classification tasks revealed highly promising performance, underscoring the method’s robustness and adaptability.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).