Fe2VAl Heusler合金的表面位错:形成及其对电阻率的影响

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fadi Saied Ahmad , Amram Azulay , Gautam Kumar , Yaron Amouyal , Hanna Bishara
{"title":"Fe2VAl Heusler合金的表面位错:形成及其对电阻率的影响","authors":"Fadi Saied Ahmad ,&nbsp;Amram Azulay ,&nbsp;Gautam Kumar ,&nbsp;Yaron Amouyal ,&nbsp;Hanna Bishara","doi":"10.1016/j.scriptamat.2025.116860","DOIUrl":null,"url":null,"abstract":"<div><div>Dislocation density impacts functional properties of materials. For hard materials, introducing dislocations is normally challenging due to crack formation. Here, we use mechanical grinding and nanoindentation techniques to form near-surface dislocations in Fe<sub>2</sub>VAl. Transmission electron microscopy shows that 2 × 10<sup>14</sup> and 3 × 10<sup>13</sup> m<sup>-2</sup> are present at 1 μm away from the surface, respectively. Local four-point probe electrical measurements indicate that the electrical resistivities for pristine, indented, and ground regions are 3.9, 4.2, and 7.5 ± 0.1 μΩ cm, respectively, confirming that dislocations significantly impede charge transport. The relation between resistivity and dislocation density is discussed in terms of the interaction between electrons and the strain fields induced by dislocations. Additionally, we determine that the elastic modulus and nanohardness for the pristine alloy are 225 ± 5 GPa and 6.6 ± 0.1 GPa, respectively. This study demonstrates that surface mechanical treatments can be used to control the electrical resistivity of these alloys.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"268 ","pages":"Article 116860"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface dislocations in a Fe2VAl Heusler alloy: Formation and effects on electrical resistivity\",\"authors\":\"Fadi Saied Ahmad ,&nbsp;Amram Azulay ,&nbsp;Gautam Kumar ,&nbsp;Yaron Amouyal ,&nbsp;Hanna Bishara\",\"doi\":\"10.1016/j.scriptamat.2025.116860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dislocation density impacts functional properties of materials. For hard materials, introducing dislocations is normally challenging due to crack formation. Here, we use mechanical grinding and nanoindentation techniques to form near-surface dislocations in Fe<sub>2</sub>VAl. Transmission electron microscopy shows that 2 × 10<sup>14</sup> and 3 × 10<sup>13</sup> m<sup>-2</sup> are present at 1 μm away from the surface, respectively. Local four-point probe electrical measurements indicate that the electrical resistivities for pristine, indented, and ground regions are 3.9, 4.2, and 7.5 ± 0.1 μΩ cm, respectively, confirming that dislocations significantly impede charge transport. The relation between resistivity and dislocation density is discussed in terms of the interaction between electrons and the strain fields induced by dislocations. Additionally, we determine that the elastic modulus and nanohardness for the pristine alloy are 225 ± 5 GPa and 6.6 ± 0.1 GPa, respectively. This study demonstrates that surface mechanical treatments can be used to control the electrical resistivity of these alloys.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"268 \",\"pages\":\"Article 116860\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225003239\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225003239","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

位错密度影响材料的功能性能。对于硬材料,由于裂纹的形成,引入位错通常是具有挑战性的。在这里,我们使用机械研磨和纳米压痕技术在Fe2VAl中形成近表面位错。透射电镜显示,在距离表面1 μm处分别存在2 × 1014和3 × 1013 m-2。局部四点探针电测量表明,原始区域、凹陷区域和地面区域的电阻率分别为3.9、4.2和7.5±0.1 μΩ cm,证实位错显著阻碍电荷传输。从电子与位错引起的应变场相互作用的角度讨论了电阻率与位错密度之间的关系。此外,我们确定了原始合金的弹性模量和纳米硬度分别为225±5 GPa和6.6±0.1 GPa。该研究表明,表面机械处理可用于控制这些合金的电阻率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface dislocations in a Fe2VAl Heusler alloy: Formation and effects on electrical resistivity

Surface dislocations in a Fe2VAl Heusler alloy: Formation and effects on electrical resistivity
Dislocation density impacts functional properties of materials. For hard materials, introducing dislocations is normally challenging due to crack formation. Here, we use mechanical grinding and nanoindentation techniques to form near-surface dislocations in Fe2VAl. Transmission electron microscopy shows that 2 × 1014 and 3 × 1013 m-2 are present at 1 μm away from the surface, respectively. Local four-point probe electrical measurements indicate that the electrical resistivities for pristine, indented, and ground regions are 3.9, 4.2, and 7.5 ± 0.1 μΩ cm, respectively, confirming that dislocations significantly impede charge transport. The relation between resistivity and dislocation density is discussed in terms of the interaction between electrons and the strain fields induced by dislocations. Additionally, we determine that the elastic modulus and nanohardness for the pristine alloy are 225 ± 5 GPa and 6.6 ± 0.1 GPa, respectively. This study demonstrates that surface mechanical treatments can be used to control the electrical resistivity of these alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信