为基于物联网的智能医疗保健使用支持区块链的联邦学习来保护电子健康记录

A. Althaf Ali , M.A. Gunavathie , V. Srinivasan , M. Aruna , R. Chennappan , M. Matheena
{"title":"为基于物联网的智能医疗保健使用支持区块链的联邦学习来保护电子健康记录","authors":"A. Althaf Ali ,&nbsp;M.A. Gunavathie ,&nbsp;V. Srinivasan ,&nbsp;M. Aruna ,&nbsp;R. Chennappan ,&nbsp;M. Matheena","doi":"10.1016/j.ceh.2025.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of smart city applications with healthcare has revolutionized patient monitoring and medical data management. However, ensuring the privacy and security of Electronic Health Records (EHR) remains a critical challenge, especially in IoT-based environments with resource-constrained devices. This paper proposes a novel Blockchain-Enabled Federated Learning (BFL) framework to enhance privacy preservation in EHR processing. The proposed framework leverages zero-knowledge proofs (ZKP) for authentication and homomorphic encryption for secure computation, ensuring robust data security without exposing raw patient data. Federated Learning (FL) enables decentralized model training across IoT devices, reducing privacy risks while maintaining data utility. Additionally, blockchain technology enhances the integrity and transparency of EHR transactions by creating a tamper-proof ledger. The performance of the proposed BFL framework is evaluated based on data utility, model accuracy, execution time, and scalability across varying sizes of EHR datasets. Results demonstrate improved privacy preservation, reduced computational overhead, and enhanced model efficiency, making it a promising approach for secure and privacy-aware IoT-based smart healthcare systems.</div></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"8 ","pages":"Pages 125-133"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing electronic health records using blockchain-enabled federated learning for IoT-based smart healthcare\",\"authors\":\"A. Althaf Ali ,&nbsp;M.A. Gunavathie ,&nbsp;V. Srinivasan ,&nbsp;M. Aruna ,&nbsp;R. Chennappan ,&nbsp;M. Matheena\",\"doi\":\"10.1016/j.ceh.2025.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of smart city applications with healthcare has revolutionized patient monitoring and medical data management. However, ensuring the privacy and security of Electronic Health Records (EHR) remains a critical challenge, especially in IoT-based environments with resource-constrained devices. This paper proposes a novel Blockchain-Enabled Federated Learning (BFL) framework to enhance privacy preservation in EHR processing. The proposed framework leverages zero-knowledge proofs (ZKP) for authentication and homomorphic encryption for secure computation, ensuring robust data security without exposing raw patient data. Federated Learning (FL) enables decentralized model training across IoT devices, reducing privacy risks while maintaining data utility. Additionally, blockchain technology enhances the integrity and transparency of EHR transactions by creating a tamper-proof ledger. The performance of the proposed BFL framework is evaluated based on data utility, model accuracy, execution time, and scalability across varying sizes of EHR datasets. Results demonstrate improved privacy preservation, reduced computational overhead, and enhanced model efficiency, making it a promising approach for secure and privacy-aware IoT-based smart healthcare systems.</div></div>\",\"PeriodicalId\":100268,\"journal\":{\"name\":\"Clinical eHealth\",\"volume\":\"8 \",\"pages\":\"Pages 125-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical eHealth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588914125000164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914125000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能城市应用程序与医疗保健的集成彻底改变了患者监控和医疗数据管理。然而,确保电子健康记录(EHR)的隐私性和安全性仍然是一个严峻的挑战,特别是在基于物联网的环境中,设备资源受限。本文提出了一种新的基于区块链的联邦学习(BFL)框架,以增强电子病历处理中的隐私保护。该框架利用零知识证明(ZKP)进行身份验证,利用同态加密进行安全计算,在不暴露原始患者数据的情况下确保强大的数据安全性。联邦学习(FL)支持跨物联网设备的分散模型训练,在保持数据效用的同时降低隐私风险。此外,区块链技术通过创建防篡改分类帐来增强EHR交易的完整性和透明度。所提出的BFL框架的性能基于数据效用、模型准确性、执行时间和跨不同大小的EHR数据集的可扩展性进行评估。结果表明,该方法改善了隐私保护,减少了计算开销,提高了模型效率,使其成为一种有前景的安全且具有隐私意识的基于物联网的智能医疗保健系统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Securing electronic health records using blockchain-enabled federated learning for IoT-based smart healthcare
The integration of smart city applications with healthcare has revolutionized patient monitoring and medical data management. However, ensuring the privacy and security of Electronic Health Records (EHR) remains a critical challenge, especially in IoT-based environments with resource-constrained devices. This paper proposes a novel Blockchain-Enabled Federated Learning (BFL) framework to enhance privacy preservation in EHR processing. The proposed framework leverages zero-knowledge proofs (ZKP) for authentication and homomorphic encryption for secure computation, ensuring robust data security without exposing raw patient data. Federated Learning (FL) enables decentralized model training across IoT devices, reducing privacy risks while maintaining data utility. Additionally, blockchain technology enhances the integrity and transparency of EHR transactions by creating a tamper-proof ledger. The performance of the proposed BFL framework is evaluated based on data utility, model accuracy, execution time, and scalability across varying sizes of EHR datasets. Results demonstrate improved privacy preservation, reduced computational overhead, and enhanced model efficiency, making it a promising approach for secure and privacy-aware IoT-based smart healthcare systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信