{"title":"RNA模拟的最小模型","authors":"D. Thirumalai , Naoto Hori , Hung T. Nguyen","doi":"10.1016/j.sbi.2025.103107","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing importance of RNA as a prime player in biology can hardly be overstated. Problems in RNA, such as folding and RNA–RNA interactions that drive phase separation, require cations. Because experiments alone cannot reveal the dynamics of cation-RNA interactions, well calibrated theory and computations are needed to predict how ions control the behavior of RNA. The perspective describes the development and use of coarse-grained models at different resolutions. We focus on single- and three-interaction site models, in which electrostatic interactions are treated using a combination of explicit and implicit representations. Applications to the folding of ribozymes and riboswitches are discussed, with emphasis on the role of monovalent and divalent cations. We also discuss phase separation in low-complexity sequences. Challenges in the simulation of complex problems such as ribosome assembly and RNA chaperones, requiring developments of models for RNA-protein interactions, are pointed out.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"93 ","pages":"Article 103107"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal models for RNA simulations\",\"authors\":\"D. Thirumalai , Naoto Hori , Hung T. Nguyen\",\"doi\":\"10.1016/j.sbi.2025.103107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing importance of RNA as a prime player in biology can hardly be overstated. Problems in RNA, such as folding and RNA–RNA interactions that drive phase separation, require cations. Because experiments alone cannot reveal the dynamics of cation-RNA interactions, well calibrated theory and computations are needed to predict how ions control the behavior of RNA. The perspective describes the development and use of coarse-grained models at different resolutions. We focus on single- and three-interaction site models, in which electrostatic interactions are treated using a combination of explicit and implicit representations. Applications to the folding of ribozymes and riboswitches are discussed, with emphasis on the role of monovalent and divalent cations. We also discuss phase separation in low-complexity sequences. Challenges in the simulation of complex problems such as ribosome assembly and RNA chaperones, requiring developments of models for RNA-protein interactions, are pointed out.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"93 \",\"pages\":\"Article 103107\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25001253\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001253","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The increasing importance of RNA as a prime player in biology can hardly be overstated. Problems in RNA, such as folding and RNA–RNA interactions that drive phase separation, require cations. Because experiments alone cannot reveal the dynamics of cation-RNA interactions, well calibrated theory and computations are needed to predict how ions control the behavior of RNA. The perspective describes the development and use of coarse-grained models at different resolutions. We focus on single- and three-interaction site models, in which electrostatic interactions are treated using a combination of explicit and implicit representations. Applications to the folding of ribozymes and riboswitches are discussed, with emphasis on the role of monovalent and divalent cations. We also discuss phase separation in low-complexity sequences. Challenges in the simulation of complex problems such as ribosome assembly and RNA chaperones, requiring developments of models for RNA-protein interactions, are pointed out.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation