基于迁移学习模型和融合策略的皮肤病分类

YA-Ching Yang , Wu-Chun Chung , Chun-Ying Wu , Che-Lun Hung , Yi-Ju Chen
{"title":"基于迁移学习模型和融合策略的皮肤病分类","authors":"YA-Ching Yang ,&nbsp;Wu-Chun Chung ,&nbsp;Chun-Ying Wu ,&nbsp;Che-Lun Hung ,&nbsp;Yi-Ju Chen","doi":"10.1016/j.ibmed.2025.100271","DOIUrl":null,"url":null,"abstract":"<div><div>Inflammatory skin diseases often display overlapping visual features, making accurate diagnosis challenging. This study proposes a deep learning framework combining transfer learning, feature fusion, and adaptive ensemble strategies to improve dermatological image classification. Using MobileNetV3-Large as the backbone, expert-defined anatomical metadata and model-derived probabilities were fused to enrich diagnostic features. A fuzzy rank-based ensemble aggregated predictions across multiple regions of interest (ROIs), prioritizing classifier confidence dynamically. The approach achieved consistent performance across ROI settings, with F1-scores reaching 0.8. These findings demonstrate that integrating anatomical context with deep learning enhances the interpretability and diagnostic utility of automated dermatological systems.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100271"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin disease classification using transfer learning model and fusion strategy\",\"authors\":\"YA-Ching Yang ,&nbsp;Wu-Chun Chung ,&nbsp;Chun-Ying Wu ,&nbsp;Che-Lun Hung ,&nbsp;Yi-Ju Chen\",\"doi\":\"10.1016/j.ibmed.2025.100271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inflammatory skin diseases often display overlapping visual features, making accurate diagnosis challenging. This study proposes a deep learning framework combining transfer learning, feature fusion, and adaptive ensemble strategies to improve dermatological image classification. Using MobileNetV3-Large as the backbone, expert-defined anatomical metadata and model-derived probabilities were fused to enrich diagnostic features. A fuzzy rank-based ensemble aggregated predictions across multiple regions of interest (ROIs), prioritizing classifier confidence dynamically. The approach achieved consistent performance across ROI settings, with F1-scores reaching 0.8. These findings demonstrate that integrating anatomical context with deep learning enhances the interpretability and diagnostic utility of automated dermatological systems.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"12 \",\"pages\":\"Article 100271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666521225000754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

炎症性皮肤病经常表现出重叠的视觉特征,使准确诊断具有挑战性。本研究提出了一种结合迁移学习、特征融合和自适应集成策略的深度学习框架来改进皮肤病学图像分类。使用MobileNetV3-Large作为主干,专家定义的解剖元数据和模型派生的概率被融合以丰富诊断特征。基于模糊秩的集成聚合了多个感兴趣区域(roi)的预测,动态地对分类器置信度进行优先排序。该方法在ROI设置中实现了一致的性能,f1得分达到0.8。这些发现表明,将解剖学背景与深度学习相结合,可以提高自动化皮肤病学系统的可解释性和诊断效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skin disease classification using transfer learning model and fusion strategy
Inflammatory skin diseases often display overlapping visual features, making accurate diagnosis challenging. This study proposes a deep learning framework combining transfer learning, feature fusion, and adaptive ensemble strategies to improve dermatological image classification. Using MobileNetV3-Large as the backbone, expert-defined anatomical metadata and model-derived probabilities were fused to enrich diagnostic features. A fuzzy rank-based ensemble aggregated predictions across multiple regions of interest (ROIs), prioritizing classifier confidence dynamically. The approach achieved consistent performance across ROI settings, with F1-scores reaching 0.8. These findings demonstrate that integrating anatomical context with deep learning enhances the interpretability and diagnostic utility of automated dermatological systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信