基于VO2相变特性的可重构太赫兹超表面和动态涡旋光束操纵

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Siyuan Zhu , Xin-Hua Deng , Yansong Liu , Jiaqi Geng , Yanxu Bao , Yuqiang Zhang , Yaokun Lou
{"title":"基于VO2相变特性的可重构太赫兹超表面和动态涡旋光束操纵","authors":"Siyuan Zhu ,&nbsp;Xin-Hua Deng ,&nbsp;Yansong Liu ,&nbsp;Jiaqi Geng ,&nbsp;Yanxu Bao ,&nbsp;Yuqiang Zhang ,&nbsp;Yaokun Lou","doi":"10.1016/j.physleta.2025.130776","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome the technical limitations of static operational frameworks in conventional metasurfaces, this paper introduces a novel platform demonstrating dynamic reconfigurability utilizing the phase-transition properties of vanadium dioxide (VO₂). By designing an Au–VO₂ composite split-ring resonator (SRR), a temperature-responsive mechanism for dynamic topological charge control is established. Leveraging the insulator-to-metal (ITM) phase transition characteristics of VO₂, the transmission phase response of the metasurface unit can be finely tuned through precise temperature regulation. After structural parameter optimization and the application of a rotation strategy based on the Pancharatnam–Berry (PB) phase principle, the constructed periodic array structure achieves reversible switching between topological charges of ±1 and ±2 within the atmospheric window of 0.62–0.68 THz. Numerical simulations demonstrate that orbital angular momentum (OAM) vortex beams generated at distinct temperatures (293 K and 341 K) maintain stable main-lobe intensity distributions, confirming notable mode independence. Significantly, the reconfigured transmission phase response exhibits temperature-independent characteristics, realizing dynamically reconfigurable unit phase states. This research prevents an innovative solution for dynamic optical field control in the Terahertz (THz) band and offers valuable insights for advanced applications.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"555 ","pages":"Article 130776"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable terahertz metasurface and dynamic vortex beam manipulation based on the phase transition characteristics of VO2\",\"authors\":\"Siyuan Zhu ,&nbsp;Xin-Hua Deng ,&nbsp;Yansong Liu ,&nbsp;Jiaqi Geng ,&nbsp;Yanxu Bao ,&nbsp;Yuqiang Zhang ,&nbsp;Yaokun Lou\",\"doi\":\"10.1016/j.physleta.2025.130776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To overcome the technical limitations of static operational frameworks in conventional metasurfaces, this paper introduces a novel platform demonstrating dynamic reconfigurability utilizing the phase-transition properties of vanadium dioxide (VO₂). By designing an Au–VO₂ composite split-ring resonator (SRR), a temperature-responsive mechanism for dynamic topological charge control is established. Leveraging the insulator-to-metal (ITM) phase transition characteristics of VO₂, the transmission phase response of the metasurface unit can be finely tuned through precise temperature regulation. After structural parameter optimization and the application of a rotation strategy based on the Pancharatnam–Berry (PB) phase principle, the constructed periodic array structure achieves reversible switching between topological charges of ±1 and ±2 within the atmospheric window of 0.62–0.68 THz. Numerical simulations demonstrate that orbital angular momentum (OAM) vortex beams generated at distinct temperatures (293 K and 341 K) maintain stable main-lobe intensity distributions, confirming notable mode independence. Significantly, the reconfigured transmission phase response exhibits temperature-independent characteristics, realizing dynamically reconfigurable unit phase states. This research prevents an innovative solution for dynamic optical field control in the Terahertz (THz) band and offers valuable insights for advanced applications.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"555 \",\"pages\":\"Article 130776\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960125005560\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125005560","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了克服传统元表面中静态操作框架的技术限制,本文介绍了一种利用二氧化钒(VO₂)的相变特性展示动态可重构性的新平台。通过设计Au-VO 2复合劈裂环谐振器(SRR),建立了一种温度响应的动态拓扑电荷控制机制。利用VO 2的绝缘体到金属(ITM)相变特性,可以通过精确的温度调节来精细调节超表面单元的传输相位响应。经过结构参数优化和基于Pancharatnam-Berry (PB)相位原理的旋转策略的应用,所构建的周期阵列结构在0.62-0.68 THz的大气窗口内实现了±1和±2拓扑电荷的可逆切换。数值模拟表明,在不同温度(293 K和341 K)下产生的轨道角动量涡旋光束保持稳定的主瓣强度分布,证实了显著的模独立性。值得注意的是,重构后的传输相位响应具有与温度无关的特性,实现了单元相位状态的动态重构。这项研究阻止了太赫兹(THz)波段动态光场控制的创新解决方案,并为高级应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfigurable terahertz metasurface and dynamic vortex beam manipulation based on the phase transition characteristics of VO2
To overcome the technical limitations of static operational frameworks in conventional metasurfaces, this paper introduces a novel platform demonstrating dynamic reconfigurability utilizing the phase-transition properties of vanadium dioxide (VO₂). By designing an Au–VO₂ composite split-ring resonator (SRR), a temperature-responsive mechanism for dynamic topological charge control is established. Leveraging the insulator-to-metal (ITM) phase transition characteristics of VO₂, the transmission phase response of the metasurface unit can be finely tuned through precise temperature regulation. After structural parameter optimization and the application of a rotation strategy based on the Pancharatnam–Berry (PB) phase principle, the constructed periodic array structure achieves reversible switching between topological charges of ±1 and ±2 within the atmospheric window of 0.62–0.68 THz. Numerical simulations demonstrate that orbital angular momentum (OAM) vortex beams generated at distinct temperatures (293 K and 341 K) maintain stable main-lobe intensity distributions, confirming notable mode independence. Significantly, the reconfigured transmission phase response exhibits temperature-independent characteristics, realizing dynamically reconfigurable unit phase states. This research prevents an innovative solution for dynamic optical field control in the Terahertz (THz) band and offers valuable insights for advanced applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信