基因组选择的可解释集成机器学习框架

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Jinbu Wang , Jia Zhang , Wenjie Hao , Wencheng Zong , Mang Liang , Fuping Zhao , Longchao Zhang , Lixian Wang , Huijiang Gao , Ligang Wang
{"title":"基因组选择的可解释集成机器学习框架","authors":"Jinbu Wang ,&nbsp;Jia Zhang ,&nbsp;Wenjie Hao ,&nbsp;Wencheng Zong ,&nbsp;Mang Liang ,&nbsp;Fuping Zhao ,&nbsp;Longchao Zhang ,&nbsp;Lixian Wang ,&nbsp;Huijiang Gao ,&nbsp;Ligang Wang","doi":"10.1016/j.atech.2025.101138","DOIUrl":null,"url":null,"abstract":"<div><div>Although machine learning (ML) methods have shown growing promise for genomic selection (GS), several key challenges hinder their widespread application. In this study, we conducted a comprehensive analysis comparing the performance of various ML models, along with investigations into parameter optimization, dimensionality reduction, feature selection, and the “black box” problem. We also proposed an efficient and interpretable framework, NTLS (NuSVR + TPE + LightGBM + SHAP). In the prediction of Yorkshire pig populations, NTLS outperformed the genomic best linear unbiased prediction (GBLUP) model, achieving improvements in predictive accuracy of 5.1%, 3.4%, and 1.3% for days to 100 kg (DAYS), back fat at 100 kg (BF), and number of piglets born alive (NBA), respectively. Moreover, we introduced the NuSVR model, which achieved the highest accuracy among nine compared algorithms. Our findings further highlight the importance of interpretable learning in GS and provide a detailed multi-level application of the SHAP algorithm.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101138"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpretable integrated machine learning framework for genomic selection\",\"authors\":\"Jinbu Wang ,&nbsp;Jia Zhang ,&nbsp;Wenjie Hao ,&nbsp;Wencheng Zong ,&nbsp;Mang Liang ,&nbsp;Fuping Zhao ,&nbsp;Longchao Zhang ,&nbsp;Lixian Wang ,&nbsp;Huijiang Gao ,&nbsp;Ligang Wang\",\"doi\":\"10.1016/j.atech.2025.101138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although machine learning (ML) methods have shown growing promise for genomic selection (GS), several key challenges hinder their widespread application. In this study, we conducted a comprehensive analysis comparing the performance of various ML models, along with investigations into parameter optimization, dimensionality reduction, feature selection, and the “black box” problem. We also proposed an efficient and interpretable framework, NTLS (NuSVR + TPE + LightGBM + SHAP). In the prediction of Yorkshire pig populations, NTLS outperformed the genomic best linear unbiased prediction (GBLUP) model, achieving improvements in predictive accuracy of 5.1%, 3.4%, and 1.3% for days to 100 kg (DAYS), back fat at 100 kg (BF), and number of piglets born alive (NBA), respectively. Moreover, we introduced the NuSVR model, which achieved the highest accuracy among nine compared algorithms. Our findings further highlight the importance of interpretable learning in GS and provide a detailed multi-level application of the SHAP algorithm.</div></div>\",\"PeriodicalId\":74813,\"journal\":{\"name\":\"Smart agricultural technology\",\"volume\":\"12 \",\"pages\":\"Article 101138\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart agricultural technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772375525003703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

尽管机器学习(ML)方法在基因组选择(GS)方面显示出越来越大的前景,但一些关键挑战阻碍了它们的广泛应用。在这项研究中,我们对各种机器学习模型的性能进行了全面的分析,并对参数优化、降维、特征选择和“黑箱”问题进行了研究。我们还提出了一个高效且可解释的框架,NTLS (NuSVR + TPE + LightGBM + SHAP)。在对约克郡猪群体的预测中,NTLS优于基因组最佳线性无偏预测(GBLUP)模型,在日龄至100公斤(days)、100公斤背膘(BF)和出生活仔数(NBA)的预测精度分别提高了5.1%、3.4%和1.3%。此外,我们还引入了NuSVR模型,该模型在9种比较算法中获得了最高的精度。我们的研究结果进一步强调了GS中可解释学习的重要性,并提供了SHAP算法的详细多层次应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interpretable integrated machine learning framework for genomic selection
Although machine learning (ML) methods have shown growing promise for genomic selection (GS), several key challenges hinder their widespread application. In this study, we conducted a comprehensive analysis comparing the performance of various ML models, along with investigations into parameter optimization, dimensionality reduction, feature selection, and the “black box” problem. We also proposed an efficient and interpretable framework, NTLS (NuSVR + TPE + LightGBM + SHAP). In the prediction of Yorkshire pig populations, NTLS outperformed the genomic best linear unbiased prediction (GBLUP) model, achieving improvements in predictive accuracy of 5.1%, 3.4%, and 1.3% for days to 100 kg (DAYS), back fat at 100 kg (BF), and number of piglets born alive (NBA), respectively. Moreover, we introduced the NuSVR model, which achieved the highest accuracy among nine compared algorithms. Our findings further highlight the importance of interpretable learning in GS and provide a detailed multi-level application of the SHAP algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信