{"title":"CNN2GNN:如何将CNN与GNN连接起来。","authors":"Ziheng Jiao;Hongyuan Zhang;Xuelong Li","doi":"10.1109/TPAMI.2025.3583357","DOIUrl":null,"url":null,"abstract":"Thanks to extracting the intra-sample representation, the convolution neural network (CNN) has achieved excellent performance in vision tasks. However, its numerous convolutional layers take a higher training expense. Recently, graph neural networks (GNN), a bilinear model, have succeeded in exploring the underlying topological relationship among the graph data with a few graph neural layers. Unfortunately, due to the lack of graph structure and high-cost inference on large-scale scenarios, it cannot be directly utilized on non-graph data. Inspired by these complementary strengths and weaknesses, <italic>we discuss a natural question, how to bridge these two heterogeneous networks?</i> In this paper, we propose a novel CNN2GNN framework to unify CNN and GNN together via distillation. First, to break the limitations of GNN, we design a differentiable sparse graph learning module as the head of the networks. It can dynamically learn the graph for inductive learning. Then, a response-based distillation is introduced to transfer the knowledge and bridge these two heterogeneous networks. Notably, due to extracting the intra-sample representation of a single instance and the topological relationship among the datasets simultaneously, the performance of the distilled “boosted” two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers, such as ResNet152.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 10","pages":"9367-9374"},"PeriodicalIF":18.6000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN2GNN: How to Bridge CNN With GNN\",\"authors\":\"Ziheng Jiao;Hongyuan Zhang;Xuelong Li\",\"doi\":\"10.1109/TPAMI.2025.3583357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to extracting the intra-sample representation, the convolution neural network (CNN) has achieved excellent performance in vision tasks. However, its numerous convolutional layers take a higher training expense. Recently, graph neural networks (GNN), a bilinear model, have succeeded in exploring the underlying topological relationship among the graph data with a few graph neural layers. Unfortunately, due to the lack of graph structure and high-cost inference on large-scale scenarios, it cannot be directly utilized on non-graph data. Inspired by these complementary strengths and weaknesses, <italic>we discuss a natural question, how to bridge these two heterogeneous networks?</i> In this paper, we propose a novel CNN2GNN framework to unify CNN and GNN together via distillation. First, to break the limitations of GNN, we design a differentiable sparse graph learning module as the head of the networks. It can dynamically learn the graph for inductive learning. Then, a response-based distillation is introduced to transfer the knowledge and bridge these two heterogeneous networks. Notably, due to extracting the intra-sample representation of a single instance and the topological relationship among the datasets simultaneously, the performance of the distilled “boosted” two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers, such as ResNet152.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 10\",\"pages\":\"9367-9374\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11070313/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11070313/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thanks to extracting the intra-sample representation, the convolution neural network (CNN) has achieved excellent performance in vision tasks. However, its numerous convolutional layers take a higher training expense. Recently, graph neural networks (GNN), a bilinear model, have succeeded in exploring the underlying topological relationship among the graph data with a few graph neural layers. Unfortunately, due to the lack of graph structure and high-cost inference on large-scale scenarios, it cannot be directly utilized on non-graph data. Inspired by these complementary strengths and weaknesses, we discuss a natural question, how to bridge these two heterogeneous networks? In this paper, we propose a novel CNN2GNN framework to unify CNN and GNN together via distillation. First, to break the limitations of GNN, we design a differentiable sparse graph learning module as the head of the networks. It can dynamically learn the graph for inductive learning. Then, a response-based distillation is introduced to transfer the knowledge and bridge these two heterogeneous networks. Notably, due to extracting the intra-sample representation of a single instance and the topological relationship among the datasets simultaneously, the performance of the distilled “boosted” two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers, such as ResNet152.