连接组上的扩散小波:用图扩散小波定位扩散中介结构-函数映射的源。

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Network Neuroscience Pub Date : 2025-06-27 eCollection Date: 2025-01-01 DOI:10.1162/netn_a_00456
Chirag Jain, Sravanthi Upadrasta Naga Sita, Avinash Sharma, Raju Surampudi Bapi
{"title":"连接组上的扩散小波:用图扩散小波定位扩散中介结构-函数映射的源。","authors":"Chirag Jain, Sravanthi Upadrasta Naga Sita, Avinash Sharma, Raju Surampudi Bapi","doi":"10.1162/netn_a_00456","DOIUrl":null,"url":null,"abstract":"<p><p>The intricate link between brain functional connectivity (FC) and structural connectivity (SC) is explored through models performing diffusion on SC to derive FC, using varied methodologies from single to multiple graph diffusion kernels. However, existing studies have not correlated diffusion scales with specific brain regions of interest (RoIs), limiting the applicability of graph diffusion. We propose a novel approach using graph diffusion wavelets to learn the appropriate diffusion scale for each RoI to accurately estimate the SC-FC mapping. Using the open Human Connectome Project dataset, we achieve an average Pearson's correlation value of 0.833, surpassing the state-of-the-art methods for the prediction of FC. It is important to note that the proposed architecture is entirely linear, computationally efficient, and notably demonstrates the power-law distribution of diffusion scales. Our results show that the bilateral frontal pole, by virtue of it having large diffusion scale, forms a large community structure. The finding is in line with the current literature on the role of the frontal pole in resting-state networks. Overall, the results underscore the potential of graph diffusion wavelet framework for understanding how the brain structure leads to FC.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"9 2","pages":"777-797"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226145/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diffusion wavelets on connectome: Localizing the sources of diffusion mediating structure-function mapping using graph diffusion wavelets.\",\"authors\":\"Chirag Jain, Sravanthi Upadrasta Naga Sita, Avinash Sharma, Raju Surampudi Bapi\",\"doi\":\"10.1162/netn_a_00456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intricate link between brain functional connectivity (FC) and structural connectivity (SC) is explored through models performing diffusion on SC to derive FC, using varied methodologies from single to multiple graph diffusion kernels. However, existing studies have not correlated diffusion scales with specific brain regions of interest (RoIs), limiting the applicability of graph diffusion. We propose a novel approach using graph diffusion wavelets to learn the appropriate diffusion scale for each RoI to accurately estimate the SC-FC mapping. Using the open Human Connectome Project dataset, we achieve an average Pearson's correlation value of 0.833, surpassing the state-of-the-art methods for the prediction of FC. It is important to note that the proposed architecture is entirely linear, computationally efficient, and notably demonstrates the power-law distribution of diffusion scales. Our results show that the bilateral frontal pole, by virtue of it having large diffusion scale, forms a large community structure. The finding is in line with the current literature on the role of the frontal pole in resting-state networks. Overall, the results underscore the potential of graph diffusion wavelet framework for understanding how the brain structure leads to FC.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"9 2\",\"pages\":\"777-797\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226145/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00456\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00456","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过对大脑功能连接(FC)和结构连接(SC)进行扩散的模型来探索大脑功能连接(FC)和结构连接(SC)之间的复杂联系,使用从单个到多个图扩散核的各种方法来推导FC。然而,现有的研究并没有将扩散量表与特定的大脑兴趣区域(roi)联系起来,这限制了图扩散的适用性。我们提出了一种新的方法,使用图扩散小波来学习每个RoI的适当扩散尺度,以准确估计SC-FC映射。使用开放的人类连接组项目数据集,我们实现了平均Pearson相关值为0.833,超过了最先进的FC预测方法。值得注意的是,所提出的体系结构是完全线性的,计算效率高,并且显著地展示了扩散尺度的幂律分布。结果表明,双侧额极具有较大的扩散规模,形成了较大的群落结构。这一发现与目前关于额极在静息状态网络中的作用的文献一致。总的来说,结果强调了图扩散小波框架在理解大脑结构如何导致FC方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion wavelets on connectome: Localizing the sources of diffusion mediating structure-function mapping using graph diffusion wavelets.

The intricate link between brain functional connectivity (FC) and structural connectivity (SC) is explored through models performing diffusion on SC to derive FC, using varied methodologies from single to multiple graph diffusion kernels. However, existing studies have not correlated diffusion scales with specific brain regions of interest (RoIs), limiting the applicability of graph diffusion. We propose a novel approach using graph diffusion wavelets to learn the appropriate diffusion scale for each RoI to accurately estimate the SC-FC mapping. Using the open Human Connectome Project dataset, we achieve an average Pearson's correlation value of 0.833, surpassing the state-of-the-art methods for the prediction of FC. It is important to note that the proposed architecture is entirely linear, computationally efficient, and notably demonstrates the power-law distribution of diffusion scales. Our results show that the bilateral frontal pole, by virtue of it having large diffusion scale, forms a large community structure. The finding is in line with the current literature on the role of the frontal pole in resting-state networks. Overall, the results underscore the potential of graph diffusion wavelet framework for understanding how the brain structure leads to FC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信